
DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

Module-1

Define Data:

 Data item refers to single unit of values. Considering any employee, hid ID, Name, Phone No,

years_of__experience, designation are all examples of data.

Types of Data:

 Data can be classified as grouped or elementary data based on the possibility of subdivision.

Grouped data can be further subdivided into components. Eg. Name of any employee can be

subdivided into First_Name, Middle_Name and Last_Name. However, elementary data cannot be

further subdivided. SSN or ID of any employee cannot be further subdivided and is an example for

Elementary data.

Each elementary data or component of a grouped data will have a data type.

Problem:

Identifiy the type of data for following:

(i)Aadhar_Card_Number (ii)Name (iii) Age (iv) Weight (v) Address

Solution:

(i) Aadhar_Card_Number - Elementary and Data Type: Long

(ii) Name: Grouped Data with components First_Name,

Middle_Name and Last_Name and data type is character array.

(iii) Age: Elementary Data and Data Type: Integer

(iv) Weight: Elementary Data and Data Type: Float

(v) Address: Grouped Data with components Street, City, State,

Country, Zip_Code and data type is character array.

Define Entity, Attributes and Entity Set:

 Entity is defined as an object of physical or conceptual existence. Eg. Person is an entity of

physicial existence and Department is an entity of conceptual existence

 Attributes – properties that further describe an entitiy. Eg. Person entity has attributes ID,

Name, Phone_No, Email_ID etc.

 Entity Set- set of instances of an entity providing values to the attributes of an entity.

 Eg:

ID Name Age Weight Address

001 Eena 23 66.2 Hasmukh Nagar, Shimoga, Karnataka,

577202

002 Meena 25 55.1 Ajeeb Nagar, Shimoga, Karnataka,

577203

003 Dika 19 100 Daamu Nagar, Shimoga, Karnataka,

577204

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

Data vs Information:

Parameter Data Information

Definition Raw facts Data with context

Context required Not required as any value starts as

data

Always required

Operations No operations required Any processing operation like

analysis, organization or

summarization on data yields

information

Relationship between

each other

Every data need not be an

information

Every information should be

on a data

Examples 9900201045, 35, “AIML”, 52.6 are

all data

If 9900201045 is given

context as Phone Number, it

becomes information.

Likewise possible context for

35 is age, “AIML” is branch,

52.6 is weight

Files, Records and fields

The data or information collected always need to be physically stored. Such a physical storage is

referred as file and referred by a filename. Each file consists of records, where each record captures

one entity set. Fields represent attributes of an entity and each record fills the values fieldwise.

Hierarchy of files, records and fields is:

Some fields distinguish each record and uniquely define a record. Such fields are called key-fields.

Eg: A Student file can be created which captures records of each student in the college. Each student

record will have values for fields like USN, Name, Dept, Sem, and Sex. USN is unique for each

student and is considered as keyfield.

Fixed-length vs Variable-length records

Parameter Fixed-length Variable-length

Definition Each record is of the same size The size of each record varies

Fields All fields should provide fixed

length

One variable length field

makes record variable length

Storage Easy to store and acesss Delemiters are required to

separate each record and

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

coding is required for

processing.

Efficiency Fixed length can either waste

memory or may some times be

insufficient

Highly efficient mechanism

for storage

Examples If fields like USN, Sem and Sex is

used for Student file, then each

record is fixed-length as USN

occupies 10 chars, Sem is int, and

Sex is 1charachter

If field Name is used in for

Student file, then each Name

is variable-length and hence

also makes variable-length

record file.

Problem:

In Hospital patient file: Name, Admission Date, Social Security Number, Room Number, Bed

Number, Doctor, identify primary key and identify each data item as grouped or elementary

with their types

Social Security Number is unique for each patient and hence can be a primary key

Name – Grouped data with components First_Name, Middle_Name and Last_Name with type

character array

Admission Date – Grouped data with components Day, Month and Year with type character array

Social Security Number – Elementary data with type unsigned long

Room Number – Elementary Data with type Integer

Bed Number – Elementary Data with type Integer

Doctor – Grouped data with components First_Name, Middle_Name and Last_Name with type

character array

Problem:

Which of following data items may lead to variable-length records when included as items in

the record:

(a) Age (b) Sex (c) Name of the spouse (d) Names of children (e) Education (f) Previous

employers

Age is fixed size – unsigned integer

Sex – fixed size - one character to store (M, F, and T representing Male, Female and Transgender)

Name of the spouse – variable size

Names of children – variable size

Education – variable size

Previous employers – variable size

Definition of Data Structures

Data structures is defined as a logical or mathematical organization of the data. It can be logical w.r.t

numerical index representation in case of arrays or link to next element in case of Linked List. It can

be mathematical w.r.t pointer representation in case of trees and graphs.

Selection of Data Structures:

Depends on following 2 factors:

(i) Rich enough to represent real world

(ii) Simple enough to process effectively

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

Classification of Data Structures:

Linear Data Structures have concept of previous and next for any element. In case of arrays, element

at any index has previous at (index-1) and next at (index+1). For linked list, there is a link from one

element to next element. It is called linear due to contiguous organization in memory. In case of non-

linear data structures elements are not connected linearly (contiguously) and exhibit hierarchical

relationship.

Differentiate Linear and Non-Linear Data Structures;

Array Data Structures:

Array is a collection of homogenous data elements. Each array has a dimension. Set of numbers can

be represented by a 1D array and matrix of numbers can be represented as 2D Arrays. Each array

element is accessed through an index that starts with 0. For 1D, one index is used and for 2D arrays,

2 indices are used. Hence number of indices is proportional to number of dimensions of an array.

Real world examples:

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

Ticket numbers of friends watching movie is an example of 1D array.

Marks of students in various subjects as in:

Here, 2 1D arrays are used:

char names[5][20] – to represent names of students

char subjects[4][20] – to represent names of subjects.

int marks[5][4] – to represent marks of each student (row) subjectwise (col)

Linked List:

Linked List is a data structure where each element is connected through other element using pointers.

If there are set of elements, one element is connected to another in a sequence and last element is

connected to NULL.

Realword example:

Consider the following file containing customer and the handling sales person:

One way of organizing is use an array for sales person and pointer in the customer file

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

Problem with this approach is, if one needs to find all customers of a given sales person, they need to

completely traverse the customer file which is highly inefficient when volume of records increases.

Second way of organizing is use an array for sales person and pointer to customers

Problem with this approach is, that whenever a new customer is added, pointers maintained in

salesperson should be changed. Further whenever an existing customer is deleted, pointers need to be

removed. The pointer manipulation is a complex operation and hence not efficient.

Hence most efficient way of organization is to use Linked List as shown below:

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

This approach provides advantages like (i) need not traverse entire customer file for searching records

and (ii) multiple pointers need not be maintained which is efficient. Hence it overcomes the

drawbacks of both previous array based approaches.

Tree data structure:

 It is a hierarchical data structure representing ancestral relationship (parent, child, grandchild). It

has direction from parent to child. The tree logically grows from top to bottom with a master parent

called root at the top. Parent of the same children are called siblings. However no direction connection

exists between siblings.

Real world examples:

 Tree data structure can be applied to capture hierarchical real world scenarios like family tree,

organization chart, payment mechanisms, roadmaps and others.

Problem:

Write a tree for:

Employee (SSN, Name, Address, Age, Salary)

Solution:

This is a 4 level tree. Each subdivision of a field creates a level in the tree.

Problem:

Write a tree for:

(2*x+y)*((a-7*b)^3)

Solution:

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

While writing tree for expressions, BODMAS rule is used as priority. B-Brackets, O-Order (power),

D-Division, M-Multiplication, A-Addition and S-Subtraction.

Stack Data Structures:

A Stack is a special data structure where insertion and deletion happens at one end called TOP. There

are many real world scenarios where stack is used like Stack of Disks, Stack of Books, Stack of Plates,

Stack of Biscuits and others. Insertion of an element to TOP of the stack is called PUSH and Deletion

of an element from the Stack is called POP. It follows LIFO order (Last In First Out).

Queue Data Structure:

 Queue is a special data structure where insertion happens at REAR end and deletion happens

at FRONT end. There are many real world scenarios where Queue is used like Queue of people for

Tickets, Queue of Students near FEE Counter, Queue of People for Lunch, Queue of jobs for printing

documents and others. Insertion operation is called ENQUEUE and deletion operation is called

DEQUEUE.

Graph Data Structure:

 Graph is a special data structure where there can be many to many connections between nodes

(elements). The connections can be bidirectional or unidirectional. This data structure is used in

Social Networking like Facebook, LinkedIn, Instagram to represent relationship between users.

Difference between Graph and Trees:

Parameter Trees Graph

Relationship Hierarchical – one way from parent

to child

One to many and many to one

relationship between elements

Direction From parent to child Both bidirectional in which

case it is undirected or

directional where direction

will be explicitly shown

Path from Source to

Destination

One unique path Multiple paths possible

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

Cycles No cycles can be formed. Tree is

hence called Directed Acyclic

Graph

Cycles quite possible

Applications Hierarchical scenarios like

organization chart, family tree,

tournament ties copy and others

Social Networking

applications like Facebook,

Instagram, LinkedIn and

others between users.

Data Structure Operations:

 Following are the prominent data structure operations:

(i) Searching – search for occurrence of an element in a given set of elements. Result is

usually finding existence or not of a given element.

(ii) Traversing – an operation in which one starts with first element, then visits second

element, and subsequently all the elements in the order.

(iii) Insertion – an operation to add a new element to a given set of elements. This operation

increases the number of elements.

(iv) Deletion – an operation to delete an existing element from a given set of elements. This

operation decreases the number of elements.

(v) Updation – an operation to update the value of an existing element in a given set of

elements. This operation neither increases nor decreases the number of elements.

(vi) Sorting – Operation for arranging set of elements in increasing (ascending) or decreasing

(descending) order.

(vii) Merging – An operation for joining the elements of one set to another.

Problem:

Gym center maintains membership file which contains following information (Name, Address,

TelephoneNumber, Age, Sex). Demonstrate all possible operations : Searching, Traversing,

Insertion, Deletion, Updation, Sorting and Merging

Solution:

Searching – search for Gym members based on Name or Address or Age or combination of many

fields.

Traversing – visit all members from beginning to end stored in the membership file one by one.

Insertion – Add a new member to the Gym

Deletion – Remove an existing member from Gym.

Updation – update the profile of a given member in the Gym

Sorting – Order the members in the Gym in the alphabetical order of Names

Merging – In case Gym has multiple centers, merge records of each file maintained into a single file.

Strings:

Strings are defined as sequence (array) of characters. In C, strings data type does not exist, rather it a

character array. In C, all strings are null terminated. Strings are constructed from characters in the

character set. Character set followed in C is ASCII (American Standard Code for Information

Interchange). ASCII character set is made of alphabets (both upper and lower case), digits and special

characters(?,: etc).

Points on Strings:

 A finite sequence of zero or more characters is called Strings.

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

 String of zero length is called empty string and denoted by “”;

 Characters are denoted by single quotes (‘A’) and strings are denoted by double quotes

(“AIML”)

String Operations:

- Concatenation: An operation in which second string is appended to the end of first string

Notation: S1//S2

Eg: “Hello/World”

- Substring: An operation in which existence of a string inside another string is checked.

Notation: X//Y//Z

Where Y is called substring.

If X is empty, Y is called initial substring

If Z is empty, Y is called terminal substring

- Eg: In a string “Artificial”, “Art” is an initial substring, “cial” is terminal substring and “ifi”

is a substring which is neither initial not terminal substring.

- Size of a character in C is 1 byte which is found by calling sizeof(char)

String Storage Options:

 Strings are stored in memory in 3 ways:

(i) Record Oriented Fixed Length

(ii) Variable Length storage with fixed maximum

(iii) Linked Storage

Consider the following example program to demonstrate all 3 options:

Each line is called record.

(i) Record oriented Fixed Length

In this storage, each line of program is stored in one record of fixed length. Usually the length

is fixed as 80, due to many terminals are of 80 columns. If line length exceeds fixed length, it

is stored as multiple records.

Advantages:

- Easy to access any record by providing index value. Further direct access is possible using

indexing.

- Ease of updation of any record using index value. This is provided the new record length does

not fixed record length.

Drawbacks:

- If a record has lot of blank spaces, lot of time and space wastage occurs.

- In case of records which are lengthy, insertion would require all records to be shifted down.

- Same scenario occurs when records are to be updated and new record length exceeds fixed

length.

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

Eg:

Solution is to maintain a separate POINT array. Whenever new record is added, POINT array

can be updated to point to the suitable record.

In this example, new record int x; has to be added before printf, This can be adjusted in the

POINT array without updating original record lines.

(ii) Variable Length storage with Fixed maximum.

In this approach, each line can be of any length but bounded by fixed maximum. Hence

while reading records, only record till its length will be read than fixed length which saves

time while accessing it. There are 2 ways of implementing variable length storage:

1. Using markers – Store a marker $$ at end of each record. Markers are also called

as sentinels.

2. Using length- Store length separately in POINT array. POINT array has length in

first dimension and index in second dimension.

 Eg: Using markers

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

 Using lengths

But with this kind of storage, since fixed maximum is used, space is still wasted when record length

is very less than fixed maximum. Hence solution is to use variable length storage with markers and

variable size. Such an example is shown below:

Hence each record can accommodate any number of lines and each occurrence of $$ marks one

record.

(iii) Linked Storage

In the Linked storage, a linked list is maintained for storage. Linked list consists of node

and each node points to a next node. Every node has ‘n’ number of characters, where ‘n’

is decided by application.

Eg: Given string is “ALL IS WELL” and for 1 character per node:

In case, 4 character per node is used, then:

The advantage of Linked Storage is it is both time and space efficient.

String operations:

- SUBSTRING(string, initial, length)

Extracts a substring from main string, starting at initial position till number of characters

defined by length parameter.

 Eg: SUBSTRING(“PANIPURI”,3,3) => “NIP”

 SUBSTRING(“QUEUE”,2,8)=> “UEUE”

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

- INDEX(string, pattern)

Checks whether pattern is available in the string. If found, returns location of starting character

in the pattern. If multiple occurences of same pattern exists, location of first occurrence is

returned. If the pattern does not exist, 0 is returned.

Eg: INDEX(“GOBIMANCHURI”, “MAN”) => Returns 5

 INDEX(“QUEUE”, “UE”) => Returns 2

 INDEX(“GOBIMANCHURI”, “WOMAN”) => Returns 0

- CONCAT (S1, S2)

String S2 is appended to end of S1.

Eg: CONCAT(“TOM”, “JERRY”) => TOMJERRY

 CONCAT(“JERRY”, “TOM”) =>JERRYTOM

- LENGTH(STRING)

Returns the number of characters in the String

Eg: LENGTH(“SAMSUNG”) returns 7

Pattern Matching Algorithms:
Pattern Matching Algorithms are used check whether a pattern exists in the main string. Such

algorithms returns INDEX of occurrence of pattern in main string. In case, pattern is not

found, they return 0.

Following assumptions are common for all pattern matching algorithms:

Algorithm of First Pattern Matching scheme:

Input: T-Text, P-Pattern, S-LENGTH(T), R-LENGTH(P)
Step 1: Initialize : K=1 and MAX=S-R+1
Step 2: REPEAT STEP 3 to 5 WHILE K<=MAX
Step 3: FOR L=1 to R
 IF P[L]≠ T[K+L-1] THEN GOTO STEP 5
Step 4: SET INDEX=K and EXIT
Step 5: K=K+1
Step 6: INDEX=0
Step 7: EXIT

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

Tracing:

1. T-“JAMBOON”, P-“BOON”

S- LENGTH(T)=7

R- LENGTH(P)=4

Step1: K=1, MAX=S-R+1=7-4+1=4

Step2: WHILE K<=MAX

 1<=4=>TRUE

FOR L=1 to R=> FOR L=1 to 4

L=1, P[L] ≠T[K+L-1] => P[1] ≠ T[1+1-1]=> P[1] ≠ T[1]=>B ≠J => EXIT

K=K+1 => K=1+1=2

2<=4 => TRUE

FOR L=1 to R=> FOR L=1 to 4

L=1, P[L] ≠T[K+L-1] => P[1] ≠ T[2+1-1]=> P[1] ≠ T[2]=>B ≠A => EXIT

K=K+1 => K=2+1=3

3<=4 => TRUE

FOR L=1 to R=> FOR L=1 to 4

L=1, P[L] ≠T[K+L-1] => P[1] ≠ T[3+1-1]=> P[1] ≠ T[3]=>B ≠M => EXIT

K=K+1 => K=3+1=4

4<=4 => TRUE

FOR L=1 to R=> FOR L=1 to 4

L=1, P[L] ≠T[K+L-1] => P[1] ≠ T[4+1-1]=> P[1] ≠ T[4]=>B =B

L=2, P[L] ≠T[K+L-1] => P[2] ≠ T[4+2-1]=> P[2] ≠ T[5]=>O =O

L=3, P[L] ≠T[K+L-1] => P[3] ≠ T[4+3-1]=> P[3] ≠ T[6]=>O =O

L=4, P[L] ≠T[K+L-1] => P[4] ≠ T[4+4-1]=> P[4] ≠ T[7]=>N =N

SET INDEX=K => INDEX=4

 K=K+1 => K=4+1=5

5<=4 => FALSE

RETURN INDEX which is 4

2. T-“JAMBOON”, P-“BONE”

S- LENGTH(T)=7

R- LENGTH(P)=4

Step1: K=1, MAX=S-R+1=7-4+1=4

Step2: WHILE K<=MAX

 1<=4=>TRUE

FOR L=1 to R=> FOR L=1 to 4

L=1, P[L] ≠T[K+L-1] => P[1] ≠ T[1+1-1]=> P[1] ≠ T[1]=>B ≠J => EXIT

K=K+1 => K=1+1=2

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

2<=4 => TRUE

FOR L=1 to R=> FOR L=1 to 4

L=1, P[L] ≠T[K+L-1] => P[1] ≠ T[2+1-1]=> P[1] ≠ T[2]=>B ≠A => EXIT

K=K+1 => K=2+1=3

3<=4 => TRUE

FOR L=1 to R=> FOR L=1 to 4

L=1, P[L] ≠T[K+L-1] => P[1] ≠ T[3+1-1]=> P[1] ≠ T[3]=>B ≠M => EXIT

K=K+1 => K=3+1=4

4<=4 => TRUE

FOR L=1 to R=> FOR L=1 to 4

L=1, P[L] ≠T[K+L-1] => P[1] ≠ T[4+1-1]=> P[1] ≠ T[4]=>B =B

L=2, P[L] ≠T[K+L-1] => P[2] ≠ T[4+2-1]=> P[2] ≠ T[5]=>O =O

L=3, P[L] ≠T[K+L-1] => P[3] ≠ T[4+3-1]=> P[3] ≠ T[6]=>N ≠O =>EXIT

 K=K+1 => K=4+1=5

5<=4 => FALSE

RETURN INDEX which is 0

Second Pattern Matching Algorithm:

In first algorithm, pattern is checked in the text and compared iteratively to check pattern

exists or not. In second algorithm, text is compared with pattern.

For each pattern, a pattern matching table is created in which columns are unique symbols of

table along with an ‘x’ which represents a symbol not in the pattern. Rows of the table corresponds

to the states, where initial state is Qo and final state is P. Number of states is equal to the number of

characters in the pattern.

Eg: P=aaba

Construction of Pattern matching table:

State a b x

QO Q1 QO QO

Q1 Q2 QO QO

Q2 Q2 Q3 QO

Q3 P QO QO

Corresponding pattern matching graph:

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

Check for patterns:

(i) T=aabcaba

Since, it lands at an intermediate state, pattern is not found

(ii) T=abcaabaca

 Since, it lands at final state P, pattern is found.

 Algortihm:

Linear Arrays:

Linear Arrays are a list of finite number of n homogeneous elements such that:

(a) Elements referred by index of n consecutive numbers

(b) Elements stored in contiguous memory allocation

Eg: int a[4] is a linear array as:

it is finite (4 elements), homogeneous as each element is integer, referred by index set {0,1,2,3} and

allocated contiguously in stack. If array a starts with address 1012, next element will be at 1016, then

1020 and last element at 1024.

Number of elements in linear array is computed using formula:

Length=UB-LB+1

where,

 UB – Upper Bound is the highest index of the array

Input: T-Text, P-Pattern, S-LENGTH(T), R-LENGTH(P)
Step 1: Initialize : K=1 and S1= 𝑸𝟎
Step 2: REPEAT STEP 3 to 5 WHILE 𝑺𝑲 ≠P and K<=N

Step 3: READ 𝑻𝑲
Step 4: SET 𝑺𝑲+𝟏 = 𝑭(𝑺𝑲, 𝑻𝑲)
Step 5: SET K=K+1
Step 6: IF 𝑺𝑲 = 𝑷 𝒕𝒉𝒆𝒏
 INDEX=K
 ELSE
 INDEX=0
Step 7: EXIT

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

 LB – Lower Bound is the lowest index of the array (0 in many languages, whereas 1 in other

langauges. Can also be negative if language supports negative indexing)

Eg for int a[4], UB=3 and LB=0 Hence Length=UB-LB+1=3-0+1=4

Further, for linear arrays, concept of subscript and subscripted variables exists.

In case of int a[4], one can access third element of an array as a[2].

Here 2 is the subscript and a[2] is called subscripted variable.

Linear Array Declaration:

Each declaration of an array has 3 pieces of information:

(1) Name of the array

(2) Data type of the array

(3) Index set of the array

Eg:

For array declaration float points[5],

Name is points, data type is float and index set is {0,1.2.3.4}

Linear Arrays can be accessed in constant time, means to access any element in the array same time

is required. Eg. int a[100], to access first element (a[0]). Fiftieth element (a[49]) and 100th element

(a[99]) same time is required.

Representation of Linear Array in Memory:

There are two types of declaration of Linear Arrays: (i) Static and (ii) Dynamic.

In case of static memory allocation, stack is used and in case of dynamic, heap is used.

Eg;

Differences between Static and Dynamic memory allocation of Linear Arrays:

Parameter Static Memory Allocation Dynamic Memory Allocation

Memory Area Stack is used Stack is used to store pointer to

the array and array is stored in

heap

Number of elements Fixed during compile time Can be changed during runtime

Need of any functions No, just mention the number of

elements while declaring then

arrays

Yes, malloc() for memory

allocation and free() to clear the

same

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

Garbage formation No, as the stack is cleared

when the function/program

exits

If free() is not called, the array in

the heap becomes garbage after

function/program exits

Space Efficiency Becomes fixed and can lead to

either too much or too less

Consumes as much space required

Overhead No overheads Maintaining an additional pointer

in the stack to refer to array in the

heap

Example int A[4] int *A;

A=malloc(sizeof(int)*4);

Programs/Algorithms on Linear Array Operations:

1. Creating and Displaying Array:

Algorithm for Creating Array:

Step 1: Start

Step 2: Read the size of the array (N) as input from the user

Step 3: Allocate the required memory (Specified size * Data type size) and store pointer as ARR

Step 4:For I=0 to N-1

 4.1: Read element from keyboard

 4.2: Store the element in ARR[I]

Step 5: Return

Algorithm for Displaying the Array:

Step 1: Start

Step 2: For I=0 to N-1

 2.1: Print the element in ARR[I]

Step 3: Return

#include<stdio.h>

void create_array(int *arr,int n)

{

 printf("Enter %d array elements one by one\n",n);

 int i;

 for(i=0;i<n;i++)

 {

 scanf("%d",&arr[i]);

 }

}

void display_array(int *arr,int n)

{

 printf("Array Elements are \n");

 int i;

 for(i=0;i<n;i++)

 {

 printf("%d\n",arr[i]);

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

 }

}

void main()

{

 int choice,n,sum,min;

 int *arr;

 while(1)

 {

 printf("***********Array Menu Operations*******\n");

 printf("1. Create\n");

 printf("2. Display\n");

 printf("3. Exit\n");

 printf("Enter your choice\n");

 scanf("%d",&choice);

 switch(choice)

 {

 case 1: printf("Create an array\n");

 printf("Enter the value of n\n");

 scanf("%d",&n);

 arr=malloc(sizeof(int)*n);

 create_array(arr,n);

 break;

 case 2:printf("Display the array\n");

 display_array(arr,n);

 break;

 case 3:exit(0);

 default:printf("Enter 1 2 or 3\n");

 }

 }

}

2. Bubble Sort

Algorithm:

Step 1: Start

Step 2: Initialize an array ARR of ‘N’ elements

Step 3: For I=0 to N-1 //Passes

 Step 3.1: FOR J=0 to N-1-I //Comparisons

 Step 3.1.1: IF ARR[J] > ARR[J+1]

 SWAP ARR[J] and ARR[J+1]

 Step 4: FOR I=0 to N-1

 Step 4.1 PRINT ARR[I]

 Step 5: Return

C Program:

#include<stdio.h>

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

void main()

{

 int a[5]={1,3,2,4,0};

 int N=5,i,j,t;

 //Loop for passes

 for(i=0;i<N-1;i++)

 {

 //Loop for comparisons

 for(j=0;j<N-i-1;j++)

 {

 //Check for swapping

 if(a[j]>a[j+1])

 {

 //Do swapping

 t=a[j];

 a[j]=a[j+1];

 a[j+1]=t;

 }

 }

 }

 //Print sorted array

 for(i=0;i<N;i++)

 {

 printf("%d\n",a[i]);

 }

}

3. Linear Search

Algorithm:

Step 1: Start

Step 2: Initialize an array ARR of ‘N’ elements

Step 3: Read key KEY from the user

Step 4: For I=0 to N-1 //Searching Loop

 Step 4.1: IF ARR[I]==KEY THEN

 PRINT “SUCCESSFUL SEARCH”

 RETURN

 Step 5: PRINT “UNSUCCESSFUL SEARCH”

 Step 6: Return

C Program:

#include<stdio.h>

void main()

{

 int a[5]={1,3,2,4,0};

 int KEY,i,N=5;

 printf("Enter the key\n");

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

 scanf("%d",&KEY);

 //Loop for passes

 for(i=0;i<N;i++)

 {

 if(a[i]==KEY)

 {

 printf("Succesful Search\n");

 exit(0);

 }

 }

 printf("Unsuccesful Search\n");

}

Multidimensional Arrays:

Multidimensional Arrays are the linear arrays with number of dimensions more than 1. Few examples

are matrix of 2 dimension (with rows and columns), image of 3 dimension (channels, rows, columns),

video of 4 dimension (frame, channels, rows, columns).

Representation of 2D Arrays in memory:

There are 2 representations: Row-major order and Column-major order.

In the row-major order, the elements are stored row by row. First row elements are filled,

subsequently second row elements till last row.

In the column-major order, the elements are stored column by column. First column elements are

filled, subsequently second column elements till last column.

Eg:

Programs/Algorithms on 2D Arrays:

1. Creating 2D array statically, reading input from keyboard, displaying matrix and

computing trace

Algorithm:

Step 1: Start

Step 2: Create 2D array MAT with size M and N

Step 3: FOR I=0 to M-1

 Step 3.1: FOR J=0 to N-1

 Step 3.1.1: Read element from keyboard and store into MAT[I][J]

Step 4: FOR I=0 to M-1

 Step 4.1: FOR J=0 to N-1

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

 Step 4.1.1: PRINT MAT[I][J]

Step 5: FOR I=0 to M-1

 Step 5.1: SUM=SUM+ MAT[I][I]

 Step 6: PRINT SUM

 Step 7: Return

C Program:

#include<stdio.h>

void main()

{

 int M=3,N=3;

 int mat[M][N],i,j;

 int sum=0;

 printf("Enter the matrix elements\n");

 for(i=0;i<M;i++)

 {

 for(j=0;j<N;j++)

 {

 scanf("%d",&mat[i][j]);

 }

 }

 printf("Matrix:\n");

 for(i=0;i<M;i++)

 {

 for(j=0;j<N;j++)

 {

 printf("%d ",mat[i][j]);

 }

 printf("\n");

 }

 for(i=0;i<M;i++)

 {

 sum=sum+mat[i][i];

 }

 printf("Trace of matrix=%d\n",sum);

}

2. Creating 2D array dynamically, reading input from keyboard, displaying matrix and

computing trace

Algorithm:

Step 1: Start

Step 2: Get M (no of rows) and N (no of cols) from user

Step 3: Create a pointer to point to a pointer array MAT

Step 4: FOR I=0 to M-1

 Step 4.1: Allocate memory for each element of MAT[i]

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

Step 5: FOR I=0 to M-1

 Step 3.1: FOR J=0 to N-1

 Step 3.1.1: Read element from keyboard and store into MAT[I][J]

Step 6: FOR I=0 to M-1

 Step 4.1: FOR J=0 to N-1

 Step 4.1.1: PRINT MAT[I][J]

Step 7: FOR I=0 to M-1

 Step 5.1: SUM=SUM+ MAT[I][I]

 Step 8: PRINT SUM

 Step 9: Return

C Program:

#include<stdio.h>

void main()

{

 int **mat,i,j,M,N;

 printf("Enter the value of M and N\n");

 scanf("%d%d",&M,&N);

 mat=malloc(sizeof(int*)*M);

 for(i=0;i<M;i++)

 {

 mat[i]=malloc(sizeof(int)*N);

 }

 int sum=0;

 printf("Enter the matrix elements\n");

 for(i=0;i<M;i++)

 {

 for(j=0;j<N;j++)

 {

 scanf("%d",&mat[i][j]);

 }

 }

 printf("Matrix:\n");

 for(i=0;i<M;i++)

 {

 for(j=0;j<N;j++)

 {

 printf("%d ",mat[i][j]);

 }

 printf("\n");

 }

 for(i=0;i<N;i++)

 {

 sum=sum+mat[i][i];

 }

 printf("Trace of matrix=%d\n",sum);

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

}

3. C Program to compute trace of a dynamically allocated 2D Array

Algorithm:

Step 1: Start

Step 2: Set M to no of rows and N to no of cols

Step 3: Create a pointer to point to a pointer array MAT

Step 4: FOR I=0 to M-1

 Step 4.1: Allocate memory for each element of MAT[i]

Step 5: FOR I=0 to M-1

 Step 3.1: FOR J=0 to N-1

 Step 3.1.1: Read element from keyboard and store into MAT[I][J]

Step 6: FOR I=0 to N-1 //Iterate till no of columns

 Step 4.1: FOR J=0 to M-1 //Iterate till no of rows

 Step 4.1.1: PRINT MAT[J][I] //Change of row and column index

Step 7: Return

#include<stdio.h>

void main()

{

 int **mat;

 int i,j,m=3,n=2;

 mat=malloc(sizeof(int*)*m);

 for(i=0;i<m;i++)

 {

 mat[i]=malloc(sizeof(int)*n);

 }

 printf("Enter the matrix values one by one\n");

 for(i=0;i<m;i++)

 {

 for(j=0;j<n;j++)

 {

 scanf("%d",&mat[i][j]);

 }

 }

 printf("Transpose of matrix\n");

 for(i=0;i<n;i++)

 {

 for(j=0;j<m;j++)

 {

 printf("%d ",mat[j][i]);

 }

 printf("\n");

 }

}

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

Address computation of an array element:
Address of any element of an array can be computed using formulae:

where,

k – subscript

BA – Base Address

w – word length- 2bytes for int, 4bytes for float (32 bit compilers)

LB – lower bound

Eg. Consider array declaration: int A[10] and base address=1012

Address of A[7]=1012+2*(7-0) = 1012 + 14 =1026

Storing the values of an array:
There are three techniques to store array values:

(i) Declaration with initialization:

 Eg: int a[4]={1,2,3,4} OR int a[]={1,2,3,4}. Both syntax are correct. In first case, programmer

specifies the size and in latter case compiler automatically computes the size.

(ii) Read from keyboard:

 Loops are used with indexing to read all the values of an array from keyboard.

 Eg: for(i=0;i<n;i++)

 scanf(“%d”,&a[i]);

(iii) Assign individually

 The subscript of the array can be used to store each element individually.

 Eg: int a[4];

 a[0]=10;

 a[1]=20;

 a[2]=14;

 a[3]=22;

Write a C program to demonstrate full array copying:

#include<stdio.h>

void main()

{

 int i;

 int a[]={1,2,3,4,5,6,7,8};

 int b[8];

 for(i=0;i<8;i++)

 {

 b[i]=a[i]; //Copying code

 }

 for(i=0;i<8;i++)

 printf("%d\n",b[i]);

}

𝑨𝒅𝒅𝒓𝒆𝒔𝒔 𝒐𝒇 𝑨[𝒌] = 𝑩𝑨(𝑨) + 𝒘(𝒌 − 𝑳𝑩)

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

Write a C program to demonstrate selective copying of an array

#include<stdio.h>

void main()

{

 int i;

 int a[]={1,2,3,4,5,6,7,8};

 int b[4],j=0;

 for(i=0;i<8;i++)

 {

 if(a[i]%2==0) //Only copy Even number

 {

 b[j++]=a[i];

 }

 }

 for(i=0;i<4;i++)

 printf("%d\n",b[i]);

}

Jagged Arrays:
 A double pointer can be created in stack which can point to Pointer Arrays. Each pointer in the

pointer array can point to arrays of variable size. An array in which each row contains variable number

of columns is called “Jagged Arrays”.

C Program to demonstrate jagged arrays:

#include<stdio.h>

void main()

{

 char **jag; //Jagged Array

 int i,j;

 jag=malloc(sizeof(char*)*4); //Allocate memory for rows

 for(i=0;i<4;i++)

 {

 jag[i]=malloc(sizeof(char)*(i+1)); //Allocate memory for columns of each row

 }

 for(i=0;i<4;i++)

 {

 for(j=0;j<=i;j++) // j depends on i

 {

 jag[i][j]='*';

 }

 }

 for(i=0;i<4;i++)

 {

 for(j=0;j<=i;j++)

 {

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

 printf("%c ",jag[i][j]);

 }

 printf("\n");

 }

}

C Program to create following patterns using jagged arrays:

*

* *

* * *

* * * *

#include<stdio.h>

void main()

{

 char **jag; //Jagged Array

 int i,j;

 jag=malloc(sizeof(char*)*4); //Allocate memory for rows

 for(i=0;i<4;i++)

 {

 jag[i]=malloc(sizeof(char)*(i+1)); //Allocate memory for columns of each row

 }

 for(i=0;i<4;i++)

 {

 for(j=0;j<=i;j++) // j depends on i

 {

 jag[i][j]='*';

 }

 }

 for(i=0;i<4;i++)

 {

 for(j=0;j<=i;j++)

 {

 printf("%c ",jag[i][j]);

 }

 printf("\n");

 }

}

Structures:
 Structures are collection of heterogeneous elements. Arrays are collection of homogeneous

elements. Heterogeneity of structures is with respect to different type of data packed in a structure.

Eg:

struct person

{

 char name[10];

 int age;

 float salary;

};

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

Here person is called tag of structure and name, age and salary are called fields.

Hence a structure in this example holds different types of data like character array, integer and floating

point.

To create a variable of structure type, syntax is:

struct person p1;

To assign the values to fields of structure use “.” operator:

strcpy(p1.name,”manu”) //Note strings cant be directly assigned, You have to use strcpy

p1.age=22;

p1.salary=25000.0;

To create an alias for a structure, typedef is used.

Eg: instead of struct person one can alias it to person with following syntax:

typedef struct

{

 char name[10];

 int age;

 float salary;

}person;

Note: while computing the size of structure, for a character array take size in multiple of word

boundary (multiple of 4)

C program to check whether 2 persons are identical:

#include<stdio.h>

typedef struct

{

 char name[20];

 int age;

 float salary;

}person;

void comparePersons(person p1, person p2)

{

 if(strcmp(p1.name,p2.name)==0 && p1.age==p2.age && p1.salary==p2.salary)

 {

 printf("Both are same\n");

 }

 else

 {

 printf("Both are different");

 }

}

void main()

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

{

 person p1={"ramu",22,20000};

 person p2={"ramu",22,20000};

 comparePersons(p1,p2);

}

Write a C program to create an array of 3 persons, read the data and print the same – Use

static allocation

#include<stdio.h>

typedef struct

{

 char name[20];

 int age;

 float salary;

}person;

void main()

{

 int i;

 person p[3]; //Static allocation by Declaration

 //Read the data

 printf("Enter details of 3 person\n");

 for(i=0;i<3;i++)

 {

 scanf("%s%d%f",p[i].name,&p[i].age,&p[i].salary);

 }

 //Print the data

 for(i=0;i<3;i++)

 {

 printf("%s,%d,%f\n",p[i].name,p[i].age,p[i].salary);

 }

}

Write a C program to create an array of n persons, read the data and print the same – Use

dynamic allocation.

#include<stdio.h>

typedef struct

{

 char name[20];

 int age;

 float salary;

}person;

void main()

{

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

 int i,n;

 printf("Enter the value of n \n");

 scanf("%d",&n);

 person *p; //Declaration

 p=malloc(sizeof(person)*n);

 //Read the data

 printf("Enter details of %d person\n",n);

 for(i=0;i<n;i++)

 {

 scanf("%s%d%f",p[i].name,&p[i].age,&p[i].salary);

 }

 //Print the data

 for(i=0;i<n;i++)

 {

 printf("%s,%d,%f\n",p[i].name,p[i].age,p[i].salary);

 }

 free(p);//Ensures no garbages are created

}

Nested Structures:
 One can put a structure inside another and this concept is called Nested structures.

Previous program can be modified with person structure containing a structure for date of

birth as follows:

#include<stdio.h>

typedef struct

{

 int day;

 int month;

 int year;

}dob;

typedef struct

{

 char name[20];

 int age;

 float salary;

 dob d; //Since aliased dob can be directly used instead of struct dob

}person; //Person is a nested structure containing DOB

void main()

{

 int i,n;

 printf("Enter the value of n \n");

 scanf("%d",&n);

 person *p; //Declaration

 p=malloc(sizeof(person)*n);

 //Read the data

 printf("Enter details of %d person\n",n);

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

 for(i=0;i<n;i++)

 {

 scanf("%s%d%f%d%d%d",p[i].name,&p[i].age,&p[i].salary,

 &p[i].d.day,&p[i].d.month,&p[i].d.year);

 }

 //Print the data

 for(i=0;i<n;i++)

 {

 printf("%s,%d,%f,%d,%d,%d\n",p[i].name,p[i].age,p[i].salary ,

 p[i].d.day,p[i].d.month,p[i].d.year);

 }

 free(p);//Ensures no garbages are created

}

Structures v/s Unions
Sl.

No.

Parameter Structure Union

3. Keyword struct keyword is used to define

structures

union keyword is used to

define union

4. Memory size The total size of a structure is

equal to the sum of the different

fields in a structure

The total size of a union is

equal to the maximum of the

different fields in a union

5. Memory Allocation Separate block of memory is

allotted to each field

Single block of memory is

allocated which is shared by

all the fields

6. Example size

computation

typedef struct

{

 char name[22];

 int age;

 int rank;

}person;

Size=24(due to multiple of 4

rule)+4+4=32

typedef union

{

 char name[22];

 int age;

 int rank;

}uperson;

Size=24(due to multiple of 4

rule)

7. Access Simultaneous access of multiple

members is possible

Only one member can be

accessed at each time. Other

fields become garbages at

that time

8. Change of value Multiple members value can be

changed.

Only one member value can

be changed at any time and

other members then become

garbage.

Self Referential Structures:

Structures in which a field refers the defined structure is called Self Referrential structures. Eg:

typedef struct

{

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

 int data;

 struct list *next;

} list;

void main()

{

 list *l1,*l2,*l3;

 l1=malloc(sizeof(list));

 l2=malloc(sizeof(list));

 l3=malloc(sizeof(list));

 l1->data=20;

 l1->next=l2;

 l2->data=40;

 l2->next=l3;

 l3->data=10;

 l3->next=NULL;

}

Here structure list contains a pointer next which refers to structure list itself and hence the structure

is called Self Referential structure. Further this structure represents one node and multiple nodes (l1,

l2,l3) is created. Dynamically memory is allocated for each node. The pointers create a link between

nodes and resulting structure is called linked list.

Sparse Matrix Representation using Arrays

Sparse Matrix is a special matrix which consists of most of zero elements and few non-zero elements.

Hence instead of 2D representation for sparse matrix, a structure based representation can be used to

efficiently represent the matrix, The structure consists of fields namely row, column and value,

Eg. Consider a sparse matrix of size 4X4

0 0 0 1

1 0 0 2

0 3 0 0

0 0 4 0

The corresponding sparse storage is:

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

First row corresponds to number of rows, number of columns and number of non-zero elements. Rest

of the rows are filled row-wise and in each row column-wise. Only non-zero elements are considered

and for each non-zero element, row index, column index and value is recorded.

Using this sparse storage, transpose can be computed by copying from first entry of sparse storage

with row and column values being swapped. Then from subsequent entries in sparse storage, lowest

column number is found. For each such entry, row and column indices are swapped, value is retained

in an entry created in transpose. For the example discussed above, corresponding transpose is:

This transpose computation is inefficient as the complexity = (number of terms)*(number of

columns). This multiplicative increase is due to the nested for loops used while computing transpose.

Alternative fast transpose technique:

Row terms array is constructed where number of entries equal to number of columns. Row terms give

frequency count of each column index in sparse storage. Row terms is initially initialzed to 0. Later

based on the frequency of occurrence of each column index, increment is done.

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

Initially After frequency count updation

Starting position of each column index is recorded using formula:

startingpos[index]=startingpos[index-1]+rowterms[index-1]

startingpos[0] is set to 1.

The resulting starting position of the above example is:

Fast transpose is computed by finding position of each column index using startingpos array. Then

row and column values are swapped and value entry of column index in sparse storage is copied to a

position in the fast transpose array indicated by startingpos value.

Resulting fast transpose for the above example is:

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

The complexity of this transpose is = 2*(numterms+numofcolumns). Hence it is an additive increase

and do not have any nested loops. This transpose is thus faster than the conventional transpose

computation.

Implementation of sparse matrix, transpose and fast transpose:

typedef struct

{

 int row;

 int col;

 int value;

} term;

void read_matrix(int mat[10][10],int m,int n)

{

 int i,j;

 for(i=0;i<m;i++)

 {

 for(j=0;j<n;j++)

 {

 scanf("%d",&mat[i][j]);

 }

 }

}

void print_matrix(int mat[10][10],int m,int n)

{

 int i,j;

 for(i=0;i<m;i++)

 {

 for(j=0;j<n;j++)

 {

 printf("%d ",mat[i][j]);

 }

 printf("\n");

 }

}

int create_sparse(int mat[10][10],int m,int n, term a[10])

{

 int nzi=0,i,j;

 a[0].row=m;

 a[0].col=n;

 int cnt=1;

 for(i=0;i<m;i++)

 {

 for(j=0;j<n;j++)

 {

 if(mat[i][j]!=0)

 {

 a[cnt].row=i;

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

 a[cnt].col=j;

 a[cnt].value=mat[i][j];

 cnt++;

 }

 }

 }

 a[0].value=cnt-1;

 return (cnt-1);

}

void display_sparse(term a[10], int nzi)

{

 int i;

 for(i=0;i<=nzi;i++)

 {

 printf("%d %d %d\n",a[i].row,a[i].col,a[i].value);

 }

}

void transpose_sparse(term a[20],term b[20])

{

 int i,j,cb;

 b[0].row=a[0].col;

 b[0].col=a[0].row;

 b[0].value=a[0].value;

 cb=1;

 for(i=0;i<a[0].col;i++) //Column indices

 {

 for(j=1;j<=a[0].value;j++)

 {

 if(a[j].col==i)

 {

 b[cb].row=a[j].col;

 b[cb].col=a[j].row;

 b[cb].value=a[j].value;

 cb++;

 }

 }

 }

}

void fast_transpose(term a[10],term b[10])

{

 int i,j;

 int rowTerms[10],startingPos[10];

 //Fill the first row of transpose

 b[0].row=a[0].col;

 b[0].col=a[0].row;

 b[0].value=a[0].value;

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

 //Initialize rowterms array elements to 0

 for(i=0;i<a[0].col;i++)

 rowTerms[i]=0;

 //For each column in sparse, increment rowterm entry by 1

 for(j=1;j<=a[0].value;j++)

 {

 rowTerms[a[j].col]++;

 }

 //Initialize statring position first element to 1

 startingPos[0]=1;

 //Update starting position by forumla: sp[i]=sp[i-1]+rowterms[i-1]

 for(i=1;i<a[0].col;i++)

 {

 startingPos[i]=startingPos[i-1]+rowTerms[i-1];

 }

 //For each column in sparse, find its location in transpose

 for(i=1;i<=a[0].value;i++)

 {

 j=startingPos[a[i].col];

 b[j].row=a[i].col;

 b[j].col=a[i].row;

 b[j].value=a[i].value;

 j++;

 }

}

void main()

{

 int mat[10][10],m,n,nzi;

 term a[10],b[10];

 m=3,n=4;

 read_matrix(mat,m,n);

 print_matrix(mat,m,n);

 nzi=create_sparse(mat,m,n,a);

 display_sparse(a,nzi);

 transpose_sparse(a,b);

 printf("TRanspose.....\n");

 display_sparse(b,nzi);

 fast_transpose(a,b);

 printf("Fast TRanspose.....\n");

 display_sparse(b,nzi);

}

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

Module-2

Stacks

Stacks are a special kind of data structure in which insertion and deletion happens at the same end

called top of the stack. Stack follows a Last-In-First-Out data structure. Books arranged on top of

each other, plates arranged in a reception, box of pringles potato chips and many others are real time

examples of the stack.

Stack Operations:

1. CREATE – used to create an empty stack of specific size.

2. PUSH – used to insert an element to the top of the stack

3. POP – used to remove an element from the top of the stack.

4. DISPLAY – display all the elements of the stack.

Stack States:

 Stack can enter a state called “Overflow” when one tries to push an element to the stack beyond

its capacity. Stack can also enter a state called “Underflow” when one tries to pop an element from

an empty stack.

Stacks are static, if the size is fixed during compile time and once stack reaches this size, more

elements cannot be pushed. The memory for such a stack is allocated in the stack area of the memory.

Stacks can also be dynamic. Memory for such a stacks is allocated in the heap area of the memory.

Once size of the stack reaches max size, memory is doubled and reallocated.

Implementation of static stacks:

#define MAXSIZE 5

typedef struct

{

 int data;

}stack;

int top=-1;

int isFull(stack arr[MAXSIZE])

{

 if(top==MAXSIZE-1)

 {

 return 1; //Stack is full

 }

 return 0; //Stack is not full

}

int isEmpty(stack arr[MAXSIZE])

{

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

 if(top==-1)

 {

 return 1; //Stack is empty

 }

 return 0; //Stack is not empty

}

void push(stack arr[MAXSIZE],int ele)

{

 if(isFull(arr))

 {

 printf("Stack overflow\n");

 return;

 }

 arr[++top].data=ele;

}

void pop(stack arr[MAXSIZE])

{

 if(isEmpty(arr))

 {

 printf("Stack underflow\n");

 return;

 }

 printf("Element popped=%d\n",arr[top].data);

 top--;

}

void display(stack arr[MAXSIZE])

{

 int i;

 if(isEmpty(arr))

 {

 printf("Stack empty\n");

 return;

 }

 for(i=top;i>=0;i--)

 {

 printf("%d\n",arr[i].data);

 }

}

void main()

{

 stack arr[MAXSIZE];

 push(arr,10);

 push(arr,20);

 push(arr,30);

 display(arr);

 push(arr,40);

 push(arr,50);

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

 push(arr,60);

 push(arr,70);

 display(arr);

 pop(arr);

 pop(arr);

 pop(arr);

 pop(arr);

 pop(arr);

 pop(arr);

}

Implementation of dynamic stacks:

typedef struct

{

 int ele;

}stack;

int MAXSIZE=3;

int top=-1;

void isFull(stack *arr)

{

 if(top==(MAXSIZE-1))

 {

 MAXSIZE=2*MAXSIZE;

 printf("Stack overflow size increased to %d\n",MAXSIZE);

 arr=realloc(arr,sizeof(stack)*MAXSIZE);

 }

}

int isEmpty()

{

 if(top==-1)

 return 1;

 return 0;

}

void push(stack *arr,int ele)

{

 isFull(arr);

 arr[++top].ele=ele;

}

void pop(stack *arr)

{

 if(isEmpty())

 {

 printf("Stack Underflow..\n");

 return;

 }

 printf("Popped Element=%d\n",arr[top].ele);

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

 top--;

}

void display(stack *arr)

{

 int i;

 if(isEmpty(arr))

 {

 printf("Stack Empty..\n");

 return;

 }

 for(i=top;i>=0;i--)

 {

 printf("%d\n",arr[i].ele);

 }

}

void main()

{

 stack *arr;

 arr=malloc(sizeof(stack)*MAXSIZE);

 push(arr,10);

 push(arr,20);

 push(arr,30);

 push(arr,40);

 push(arr,50);

 push(arr,60);

 push(arr,70);

 push(arr,50);

 push(arr,60);

 push(arr,70);

 pop(arr);

 pop(arr);

 display(arr);

}

System Stack:
- A special stack used by programs to process function calls.

- Each function is allotted an area called “Activation Record” or “Stack frame”

- Only one function can execute at any time. Hence function to be selected is one at the top of

stack

- PUSH- whenever a function is called, new stack frame is pushed on top of stack

- POP – whenever a function execution is completed, stack frame from top is popped

Working of System Stack:

As shown in the following example, 2 functions are called- main and f1. First main function is

called, and for main an activation record (stack frame) is allocated. The activation record

consists of:

➢ previous frame pointer which points to address from where it was called and it has to report

back

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

➢ local variables – variables declared inside the function

➢ parameters- inputs passed to function

➢ return address – each function’s return address.

Queue:
Queue is a data structure that follows First In First Out Order (FIFO). Elements are inserted at “rear

end” and elements are deleted from “front end”. Such a queue is also called Single Ended Queue.

There are many applications of queue like:

(i) People waiting in queue for ticket booking

(ii) People waiting in queue to get vaccine

(iii) People waiting in queue for lunch during reception

(iv) Students waiting in a queue to collect library books

There are 2 types of Queue: Static Queue (fixed size) and Dynamic Queue (flexible size).

In Static Queue, max size of the queue (number of elements) is fixed during compilation. When the

size limit reaches, “Queue Overflow” state occurs. Similarly, when queue is empty, no element can

be deleted. If an attempt to deletion is done, it leads to a state called “Queue Underflow”. Further

memory for static queue is allocated in stack.

C Program demonstrating static queue:

#define MAXSIZE 5

typedef struct

{

 int data;

}queue;

int rear=-1,front=-1; //Pointers used in Single Ended Queue

int isFull(queue arr[MAXSIZE])

{

 if(rear==MAXSIZE-1)

 {

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

 return 1; //Queue is full

 }

 return 0; //Queue is not full

}

int isEmpty(queue arr[MAXSIZE])

{

 if(rear==front)

 {

 return 1; //Queue is empty

 }

 return 0; //Queue is not empty

}

void addq(queue arr[MAXSIZE],int ele)

{

 if(isFull(arr))

 {

 printf("Queue overflow\n");

 return;

 }

 arr[++rear].data=ele;

}

void deleteq(queue arr[MAXSIZE])

{

 if(isEmpty(arr))

 {

 printf("Queue underflow\n");

 return;

 }

 printf("Element popped=%d\n",arr[++front].data);

}

void display(queue arr[MAXSIZE])

{

 int i;

 if(isEmpty(arr))

 {

 printf("Queue empty\n");

 return;

 }

 for(i=front+1;i<=rear;i++)

 {

 printf("%d\n",arr[i].data);

 }

}

void main()

{

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

 queue arr[MAXSIZE];

 addq(arr,20);

 addq(arr,30);

 addq(arr,50);

 addq(arr,60);

 addq(arr,120);

 addq(arr,130);

 display(arr);

 deleteq(arr);

 deleteq(arr);

 deleteq(arr);

}

Limitations of Single Ended Queue:

- Rear pointer is incremented during element insertion and front pointer is incremented during

element deletion. Hence once all elements are deleted rear and front become same which leads

to both overflow and underflow. Hence even though queue is empty, no more elements can

be added.

- Possible solutions to such a problem include, shifting of elements during each deletion or

resetting front and rear, when they become equal during element deletion. Instead of this an

efficient mechanism is to use Circular Queue.

-

Circular Queue:
 In Circular Queue, after last element is added, new insertions can begin again from beginning,

provided deletion of some elements are done. This solves the problems of single ended queue. To

implement circular queue, modulus addition is used for both rear and front, instead of simple

increment. Further, a counter is used for tracking number of elements in the queue at any time.

Counter is incremented, as a new element is added to the circular queue. Once the count reaches

maximum size, “Queue Overflow” occurs. Counter is also decremented when element is deleted from

queue. Once the count reduces to -1, “Queue Underflow” occurs.

C Program for implementation of Circular Queue:

#define MAXSIZE 5

typedef struct

{

 int data;

} queue;

int front=-1,rear=-1,cnt=0;

int isFull(queue arr[MAXSIZE])

{

 if(cnt==MAXSIZE)

 return 1;//Queue overflow

 return 0;//Queue still free

}

int isEmpty(queue arr[MAXSIZE])

{

 if(cnt==0)

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

 return 1; //Empty

 return 0; //Non Empty

}

void addq(queue arr[MAXSIZE], int ele)

{

 if(isFull(arr))

 {

 printf("Queue overflow\n");

 return;

 }

 rear=(rear+1)%MAXSIZE;

 arr[rear].data=ele;

 cnt++;

}

void deleteq(queue arr[MAXSIZE])

{

 if(isEmpty(arr))

 {

 printf("Queue underflow\n");

 return;

 }

 front=(front+1)%MAXSIZE;

 printf("Element deleted=%d\n",arr[front].data);

 cnt--;

}

void display(queue arr[MAXSIZE])

{

 int i,j;

 j=front+1;

 for(i=0;i<cnt;i++)

 {

 printf("%d\n",arr[j].data);

 j=(j+1)%MAXSIZE;

 }

}

void main()

{

 queue arr[MAXSIZE];

 addq(arr,20);

 addq(arr,30);

 addq(arr,40);

 display(arr);

 addq(arr,50);

 addq(arr,60);

 addq(arr,70);

 display(arr);

 deleteq(arr);

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

 deleteq(arr);

 // display(arr);

 addq(arr,100);

 addq(arr,110);

 addq(arr,120);

 display(arr);

}

Circular Queue using Dynamic Arrays (Dynamic Circular Queues):
Static Circular Queues have the issues of Overflow whenever number of elements in the queue equals

the max size of the queue. Further, static circular queues use stack which has limited memory. Hence,

dynamic circular queues are used, where memory is allocated in the heap and size doubles each time

limit is reached. Dynamic memory allocation function malloc is used to create a circular queue with

some maximum size. Once limit is reached, realloc function is used to double the current size.

C Program to implement Dynamic Circular Queues:

int MAXSIZE=5;

typedef struct

{

 int data;

} queue;

int front=-1,rear=-1,cnt=0;

void isFull(queue *arr)

{

 if(cnt==MAXSIZE)

 {

 MAXSIZE=2*MAXSIZE;

 arr=realloc(arr,sizeof(queue)*MAXSIZE);

 }

}

int isEmpty(queue *arr)

{

 if(cnt==0)

 return 1; //Empty

 return 0; //Non Empty

}

void addq(queue *arr, int ele)

{

 isFull(arr);

 rear=(rear+1)%MAXSIZE;

 arr[rear].data=ele;

 cnt++;

}

void deleteq(queue *arr)

{

 if(isEmpty(arr))

 {

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

 printf("Queue underflow\n");

 return;

 }

 front=(front+1)%MAXSIZE;

 printf("Element deleted=%d\n",arr[front].data);

 cnt--;

}

void display(queue *arr)

{

 int i,j;

 j=front+1;

 for(i=0;i<cnt;i++)

 {

 printf("%d\n",arr[j].data);

 j=(j+1)%MAXSIZE;

 }

}

void main()

{

 //queue arr[MAXSIZE];

 queue *arr=malloc(sizeof(queue)*MAXSIZE);

 addq(arr,20);

 addq(arr,30);

 addq(arr,40);

 display(arr);

 addq(arr,50);

 addq(arr,60);

 addq(arr,70);

 display(arr);

 deleteq(arr);

 deleteq(arr);

 // display(arr);

 addq(arr,100);

 addq(arr,110);

 addq(arr,120);

 display(arr);

}

Dequeue (Deck or Double Ended Queue):

Dequeue is a data structure that supports addition and deletion of elements at either ends (front/rear).

Hence it uses 2 pointers left and right side of the queue. When elements are inserted to left end, left

pointer is incremented (++left) and when elements are inserted to the right end, right pointer is

decremented (right--). Relationship between stack, single ended/circular queue and dequeue is as

follows:

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

Browser history is a memory maintained by each browser. Whenever user browses a page, it is

added to the history. Pages can be added to both ends and also removed from either end. Hence

double ended queue is used for browser history management.

Working of a dequeue is illustrated below:

Variations of Dequeue:

There are two variations of dequeue: (i) Input Restricted dequeue (Input-Rear end no insertion only,

deletion, but at front end both insertion and deletion can be done)

(ii) Output Restricted dequeue: (Output- front end no deletion, only insertion. However insertion and

deletion can be done at rear end)

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

Priority Queues:
A Priority Queue is a collection of elements with each element assigned a priority. Deletion

of an element is based on following rules:

 1. An element of higher priority before lower priority

 2. For same priority elements, FIFO

Timesharing systems with high priority programs first and programs with normal priority into

standard queue

There are 2 ways to represent priority queues in memory:

(i) As a Linear List.

(ii) Using Arrays

In Linear List, it is a collection of nodes connected with link. Each node contains INFO

(Information/data), PRN (Priority Number) and Link (pointer to the next node). For last node, pointer

is null.

❑ Rule: Lower numbers indicate higher priority

❑ Higher priority nodes are behind lower priority

❑ Same priority nodes are arranged in the order added

Insertion:

For insertion search for a node whose priority is greater than this node

Deletion:

Deletion is always done by removing first node

Eg:

(AAA,1), (BBB,1), (CCC,4), (DDD,3), (EEE,2)

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

Hence with linear list, elements need to be shuffled each time, a new element of higher priority is to

be added. Instead of shuffling elements again and again, another solution is to use multiple queues.

A separate queue is maintained for each priority level. Separate front and rear pointers are maintained

for each such queue. The front and rear pointers are captured in separate arrays. Arrays for front and

rear, contains position of front and rear for each queue represented by the priority level. Further, these

arrays are used to construct a matrix . Rows of the matrix represents priority level and columns contain

the elements of the queue.

Eg:

Here, consider row 1, front is 2 and rear is 2. Hence element currently is AAA. In case new element

is to be added to row 1(Queue with priority 1), it will be added at position 3. Similarly for row 2, new

element will be added at position 4 (rear is 3) and element will be deleted from position 1 (front is 1).

Algorithm for deletion:

1. Find smallest K such that FRONT[K]!=NULL

2. Delete and process front element in row K of Queue

3. Exit

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

Algorithm for Insertion of an ITEM with priority M:

1. Insert ITEM to rear element in row M of Queue

2. Exit

Stack Applications – Expressions

Expressions contain operators and operands. Arithmetic expressions are evaluated. While evaluation,

BEDMAS rule is used. Precedence of operator determines which sub expression is first evaluated. In

case of same precedence, associativity determines the order of evaluation (Left to right or Right to

Left).

x=a/b-c+d*e-a*c

 =4/2-2+3*3-4*2

 =2-2+3*3-4*2

 =2-2+9-4*2

 =2-2+9-8

 =2+7-8

 =9-8

 =1

Precedence of unary, binary and ternary operators are shown below:

If number of operands is 1, operator is unary. Likewise, if operands is 2, operator is binary and for 3

operands, operator is ternary.

Types of Expressions:

There are 3 types of expressions based on the position of operator. If operator is inbetween operands,

expression is called “Infix Expression”. If operator comes before operands, expression is “Prefix”

and if operator comes after operands, expression is “Postfix”. Prefix expressions are also called

Eg: Evaluate the expression: x=a/b-c+d*e-a*c, where a=4, b=c=2, d=e=3

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

“Polish” and postfix expressions are also called “Reverse Polish or suffix”. Postfix and Prefix

expressions are used by compilers due to efficiency concerns during evaluation.

Algorithm for converting Infix to Postfix:

STEP 1: SCAN EXPRESSION FROM LEFT TO RIGHT

STEP 2: IF CURRENT TOKEN IS NUMBER/CHAR, PRINT IT. GOTO STEP 1

STEP 3: IF CURRENT TOKEN IS OPERATOR O:

 3.1: IF PRECEDENCE(O) <= PRECEDENCE (TOS)

 POP TOS SYMBOL and PRINT

 REPEAT 3.1

 3.2: ELSE PUSH O to STACK

 GOTO STEP 1

STEP 4: IF CURRENT TOKEN IS ‘(‘, PUSH TO STACK. GO TO STEP 1

STEP 5: IF CURRENT TOKEN IS ‘)’, POP AND PRINT ALL SYMBOLS UNTIL YOU

GET ‘(‘. GOTO STEP 1

STEP 6: POP ANY RESIDUAL SYMBOLS AND PRINT

STEP 7: IF CURRENT TOKEN IS EOS, EXIT

Eg:

𝒂 ∗ 𝒃 ∗ 𝒄

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

−𝒂 + 𝒃 − 𝒄 + 𝒅

𝒂 ∗ −𝒃 + 𝒄

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

(𝒂 + 𝒃) ∗ 𝒅 + 𝒆/(𝒇 + 𝒂 ∗ 𝒅) +c

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

Algorithm for converting Infix to Prefix:

STEP 1: REVERSE THE GIVEN EXPRESSION

STEP 2: SCAN EXPRESSION FROM LEFT TO RIGHT

STEP 3: IF CURRENT TOKEN IS NUMBER/CHAR, PRINT IT. GOTO STEP 1

STEP 4: IF CURRENT TOKEN IS OPERATOR O:

 4.1: IF PRECEDENCE(O) <= PRECEDENCE (TOS)

 POP TOS SYMBOL and PRINT

 REPEAT 4.1

 4.2: ELSE PUSH O to STACK

 GOTO STEP 1

STEP 5: IF CURRENT TOKEN IS ‘)‘, PUSH TO STACK. GO TO STEP 1

STEP 6: IF CURRENT TOKEN IS ‘(’, POP AND PRINT ALL SYMBOLS UNTIL YOU

 GET ‘)‘. GOTO STEP 1

STEP 7: POP ANY RESIDUAL SYMBOLS AND PRINT

STEP 8: IF CURRENT TOKEN IS EOS, REVERSE OUTPUT and EXIT

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

Algorithm for the Evaluation of Postfix Expressions:

ALGORTITHM:

STEP 1: SCAN EXPRESSION FROM LEFT TO RIGHT

STEP 2: IF CURRENT TOKEN IS NUMBER/CHAR, PUSH NUMBER/CHAR. GOTO STEP 1

STEP 3: IF CURRENT TOKEN IS OPERATOR O:

 3.1: POP TOS SYMBOL –NUM2

 POP TOS SYMBOL – NUM1

 PUSH (NUM1 OP NUM2)

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

 GOTO STEP 1

STEP 4: IF CURRENT TOKEN IS EOS, PRINT TOS and EXIT

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

C program for Evaluation:

#define MAX 20

typedef struct

{

 int data;

}stack;

int top=-1;

void push(stack arr[MAX],int ele)

{

 arr[++top].data=ele;

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

}

int pop(stack arr[MAX])

{

 return arr[top--].data;

}

void main()

{

 char expr[MAX];

 stack arr[MAX];

 int num1,num2,i;

 printf("Enter the valid postfix expression\n");

 scanf("%s",expr);

 for(i=0;i<strlen(expr);i++)

 {

 if(isdigit(expr[i])) //digit

 {

 push(arr,expr[i]-'0');

 }

 else

 {

 num2=pop(arr);

 num1=pop(arr);

 switch(expr[i])

 {

 case '+':push(arr,num1+num2);

 break;

 case '-':push(arr,num1-num2);

 break;

 case '*':push(arr,num1*num2);

 break;

 case '/':push(arr,num1/num2);

 break;

 }

 }

 }

 printf("Ans=%d\n",arr[top].data);

}

Algorithm for the Evaluation of Prefix Expressions:

ALGORTITHM:

STEP 1: REVERSE THE GIVEN EXPRESSION

STEP 2: SCAN EXPRESSION FROM LEFT TO RIGHT

STEP 3: IF CURRENT TOKEN IS NUMBER/CHAR, PUSH NUMBER/CHAR. GOTO STEP 1

STEP 4: IF CURRENT TOKEN IS OPERATOR O:

 4.1: POP TOS SYMBOL –NUM1

 POP TOS SYMBOL – NUM2

 PUSH (NUM1 OP NUM2)

 GOTO STEP 1

STEP 5: IF CURRENT TOKEN IS EOS, PRINT TOS and EXIT

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

Recursion:
Recursion is the process of function calling itself. Recursive functions are written using recurrence

relations. Recursion is ended by specifying base criteria. A stack frame is created for each call during

recursive function.

Eg: Finding factorial of a number using recursion:

Recurrence relation:

C code for factorial using recursion:

int fact(int n)

𝒇𝒂𝒄𝒕(𝒏) = {
𝒏 = 𝟏
𝒏 > 𝟏

 𝟏
𝒏 ∗ 𝒇𝒂𝒄𝒕(𝒏 − 𝟏)

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

{

 if(n==1) return 1;

 else

 return n*fact(n-1);

}

void main()

{

 int n=5;

 printf("%d\n",fact(n));

}

Eg: Finding n terms of Fibonacci series using recursion:

Recurrence relation:

C code for Fibonacci series using recursion:

int fib(int n)

{

 if(n==0 || n==1)

 return n;

 else

 return fib(n-1)+fib(n-2);

}

void main()

{

 int n=5,i;

 for(i=0;i<n;i++)

 printf("%d,",fib(i));

}

Eg: Finding gcd of 2 numbers using recursion:

GCD of 2 numbers using following recurrence relation:

𝒇𝒊𝒃(𝒏) = {
𝒏 = 𝟎 𝒐𝒓 𝒏 = 𝟏
 𝒏 > 𝟏

𝒏

𝒇𝒊𝒃(𝒏 − 𝟏) + 𝒇𝒊𝒃(𝒏 − 𝟐)

𝒈𝒄𝒅(𝒎,𝒏) = {
𝒏 ≠ 𝟎
 𝒆𝒍𝒔𝒆

𝒈𝒄𝒅(𝒏,𝒎%𝒏)

𝒎)

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

C Program:

int gcd(int m, int n)

{

 if(n!=0)

 return gcd(n,m%n);

 else

 return m;

}

void main()

{

 int m=81,n=27;

 int ans=gcd(m,n);

 printf("%d\n",ans);

}

Tower of Hanoi:

It is a mathematical game or puzzle consisting of three legs and a number of disks of

various diameters, which can slide onto any leg. The puzzle begins with the disks stacked on one leg

in order of decreasing size, the smallest at the top, thus approximating a conical shape. The objective

of the puzzle is to move the entire stack to the last leg, obeying the following rules:

1. Only one disk may be moved at a time.

2. Each move consists of taking the upper disk from one of the stacks and placing it on

top of another stack or on an empty leg.

3. No disk may be placed on top of a disk that is smaller than it.

Recursive Solution:

1. MOVE TOP N-1 DISKS FROM LEG A to LEG B

2. MOVE THE TOP DISK FROM LEG A TO LEG C

3. MOVE TOP N-1 DISKS FROM LEG B TO LEG C

C program:

void toh(int N,char A,char B, char C)

{

 if(N>0) //termination condition (base condition)

 {

 toh(N-1,A, C, B);

 printf("%c->%c\n",A,C);

 toh(N-1,B,A,C);

 }

}

void main()

{

 int N=3;

 toh(N,'A','B','C');

}

https://en.wikipedia.org/wiki/Mathematical_game
https://en.wikipedia.org/wiki/Puzzle
https://en.wikipedia.org/wiki/Diameter
https://en.wikipedia.org/wiki/Cone

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

Module-3

Linked Lists:

A linked list or one way list is a linear collection of nodes. Each node contains data and a

pointer next that points to the next element in the list. Addition, deletion, updation, traversal,

searching, sorting, merging frequently needed on the linked list.

Operations on linked lists:

• Addition – an operation to add a new element to a list. Possible positions include

beginning, ending, specific and depending on sort requirement.

• Deletion – an operation to remove an existing element from the list. Deletion can be done

on any node in the list.

• Updation – an operation to update an existing element in the list. Updation can be done

on any node in the list.

• Traversal – an operation in which nodes are visited from beginning till end one by one.

• Searching – an operation to find an element of interest. Result can be successful or

unsuccessful.

• Sorting – an operation to order the linked list by ascending or descending order of the

information in the linked list.

• Merging – an operation to copy data from 2 lists into a single list.

Arrays vs Linked Lists:

Parameter Array Linked List

Memory allocation Arrays need contiguous

allocation. Hence as number of

elements are large, difficult to

find contiguous allocation.

Linked list provide or use

allocation which is not

contiguous. As the number of

elements increases, linked lists

are the better solution for the

memory allocation of

elements.

Memory allocation mechanism Arrays primarily use static

allocation. However dynamic

allocation is also possible.

Linked list depends primarily

on dynamic allocation.

However, static allocation is

possible but sparingly used.

Accessing an element Direct access of any element is

possible through indexing.

Indexing is not possible. To

access any element traversal is

required till desired element is

found.

Adding a new element Needs lot of shifting of

elements towards right side

Only pointer adjustment of 2

nodes are required.

Deleting an existing element Needs lot of shifting of

elements towards left side.

Only pointer adjustment of 2

nodes are required.

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

Memory Issues Garbage and dangling pointer

issues do not occur.

Garbage and dangling pointer

issues do occur.

Overheads No overheads as elements are

contiguously stored.

Each node has an overhead to

maintain extra pointer.

Schematic of a Linked List:

Each node consists of information and a pointer called NEXT. NEXT points to the next element in

the list. If the node is the last node, NEXT is a null pointer. (NULL). The beginning node is referred

by a special pointer called START.

Example:

Linked list can be used to store patient list admitted to beds. The linked list is sorted in the ascending

order of patient names alphabetically.

Representation of Linked List in the memory:

Eg-1: Represent the word SCAM in memory:

Two arrays are maintained: INFO and LINK. String is scanned from left to right. For each character,

place is allotted in the INFO array wherever free. The next location of each letter is recorded in the

corresponding position in the LINK array.

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

Consider IA scores in subjects:

DS- 18,20,17,11,15

ADE- 20,19,14,12,18

Represent this as 2 linked lists in memory

 INFO LINK

Discuss how an employee file containing 3 records with fields (EMPID, Name, Designation,

Rank) can be stored using linked lists and without linked lists. Compare and contrast both

approaches

An employee file with 3 records and 4 fields can be stored as 3 X 4 2D array. Each row will represent

an employee record and each column represent field of employee. This organization will help to

access any employee data directly with appropriate row and column indexing. However, when

number of employees increase, the contiguous allocation issue arises and fails. Further adding and

removing an element in the specific positions would incur lot of penalty with the amount of shifting

involved. Hence a linked list representation would solve issues of memory, complexity of addition

and deletion operations. For linked list representation, each node represents and employee with

information field divided into 4 separate fields for empid, name, designation and rank and a next field

to point to the next employee record.

C program to implement basic operations of a linked list:

#include<stdlib.h>

typedef struct

{

 int data;

 struct node *next;

}node;

0 11

1

2 15

3 18

4

5 20

6

7 17

8

9 12

10 19

11

12 20

13 18

14 14

0 2

1

2 NULL

3 5

4

5 7

6

7 0

8

9 13

10 14

11

12 10

13 NULL

14 9

START

START

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

/** Function to traverse a singly linked list (SLL)

Algorithm:

Step 1: Initialize temp node with START

Step 2: If temp==NULL, goto Step 6

Step 3: Print temp->data

Step 4: Move to next node with temp=temp->next

Step 5: Goto Step 2

Step 6: EXIT

*/

void traverse(node *start)

{

 node*temp=start;

 while(temp!=NULL)

 {

 printf("%d->",temp->data);

 temp=temp->next;

 }

 printf("\b\b \n");

}

/** Function to count the number of nodes of a singly linked list (SLL)

Algorithm:

Step 1: Initialize temp node with START and COUNT to 0.

Step 2: If temp==NULL, goto Step 6

Step 3: COUNT=COUNT+1

Step 4: Move to next node with temp=temp->next

Step 5: Goto Step 2

Step 6: Print COUNT and EXIT

*/

void count_nodes(node *start)

{

 int cnt=0;

 node*temp=start;

 while(temp!=NULL)

 {

 cnt++;

 temp=temp->next;

 }

 printf("cnt=%d \n",cnt);

}

/** Function to search an element KEY in the unsorted singly linked list (SLL)

Algorithm:

Step 1: Initialize temp node with START

Step 2: If temp==NULL, goto Step 6

Step 3: If temp->data == KEY, PRINT SUCCESSFUL SEARCH and EXIT

Step 4: Move to next node with temp=temp->next

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

Step 5: Goto Step 2

Step 6: PRINT UNSUCCESSFULL SEARCH and EXIT

*/

void search_unsorted_list(node *start)

{

 node *temp=start;

 int key,pos=0;

 printf("Enter the key element\n");

 scanf("%d",&key);

 while(temp!=NULL)

 {

 pos++;

 if(temp->data==key)

 {

 printf("Successful search and position=%d\n",pos);

 return;

 }

 temp=temp->next;

 }

 printf("Unsuccessful search\n");

}

/** Function to search an element KEY in the sorted singly linked list (SLL)

Algorithm:

Step 1: Initialize temp node with START

Step 2: If temp==NULL, goto Step 7

Step 3: If temp->data == KEY, PRINT SUCCESSFUL SEARCH and EXIT

Step 4: If temp->data > KEY, PRINT UNSUCCESSFUL SEARCH and EXIT

Step 5: Move to next node with temp=temp->next

Step 6: Goto Step 2

Step 8: PRINT UNSUCCESSFULL SEARCH and EXIT

*/

void search_sorted_list(node *start)

{

 node *temp=start;

 int key,pos=0;

 printf("Enter the key element\n");

 scanf("%d",&key);

 while(temp!=NULL)

 {

 pos++;

 if(temp->data==key)

 {

 printf("Successful search and position=%d\n",pos);

 return;

 }

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

 if(key<temp->data)

 {

 printf("Unsuccessful search\n");

 return;

 }

 temp=temp->next;

 }

 printf("Unsuccessful search\n");

}

void main()

{

 node *n1,*n2,*n3,*n4,*n5;

 n1=malloc(sizeof(node)); //Dynamic memory allocation to create any node

 n2=malloc(sizeof(node));

 n3=malloc(sizeof(node));

 n4=malloc(sizeof(node));

 n5=malloc(sizeof(node));

 n1->data=9;

 n2->data=10;

 n3->data=15;

 n4->data=20;

 n5->data=51;

 n1->next=n2;

 n2->next=n3;

 n3->next=n4;

 n4->next=n5;

 n5->next=NULL;

 traverse(n1);

 count_nodes(n1);

 // search_unsorted_list(n1);

 search_sorted_list(n1);

}

Insertion of a new node to the linked list:

Insertion of a new node in the linked list, requires allocating memory to the new node and adjusting

pointers appropriately. Two pointers are maintained: START- start of the existing singly linked list

and AVAIL- start of free pool. Whenever a new node to be created, first node from free pool is picked

by accessing AVAIL and AVAIL is subsequently changed to point next free element. The current

node is a node after which a new node has to be inserted. New node is made to point to the node

which is pointed by current node. Current node then points to the new node. This mechanism is

pictorially represented in the following.

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

C program to demonstrate different type of insertions:

#include<stdlib.h>

typedef struct

{

 int data;

 struct node *next;

}node;

node *start=NULL;

/**Function to insert a given node at the beginning

Algorithm:

STEP 1: Get the data for new node

STEP 2: Allocate memory for new node

STEP 3: Assign data to the new node

STEP 4: New node points to START

STEP 5: New START is set to new node

STEP 6: EXIT

*/

void insert_begining()

{

 int ele;

 node *newnode;

 printf("Enter the element\n");

 scanf("%d",&ele);

 newnode=malloc(sizeof(node));

 newnode->data=ele;

 newnode->next=start;

 start=newnode;

}

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

/**Function to insert a given node after a given location

Algorithm:

STEP 1: Get the data for new node

STEP 2; Get the required location LOC

STEP 3: Allocate memory for new node

STEP 4: Assign data to the new node

STEP 5: Set temp to START and CNT=1

STEP 6: IF temp==NULL goto STEP 10

STEP 7: IF CNT==LOC, Goto STEP 9

STEP 8: Move temp to next node: temp=temp->next and CNT=CNT+1. Goto STEP 6

STEP 9: Set: newnode->next to temp->next and temp->next to newnode.

STEP 10: EXIT

*/

void insert_after()

{

 int ele,loc,cnt=1;

 node *newnode,*temp;

 printf("Enter the element\n");

 scanf("%d",&ele);

 printf("Enter the location\n");

 scanf("%d",&loc);

 newnode=malloc(sizeof(node));

 newnode->data=ele;

 temp=start;

 while(temp!=NULL)

 {

 if(cnt==loc)

 {

 break;

 }

 else

 {

 temp=temp->next;

 cnt++;

 }

 }

 newnode->next=temp->next;

 temp->next=newnode;

}

/**Function to insert a node in the sorted SLL (Singly Linked List)

Algorithm:

STEP 1: Get the data for new node

STEP 2: Allocate memory for new node

STEP 3: Assign data to the new node

STEP 4: Set temp to START and prev to temp

STEP 5: IF temp==NULL goto STEP 9

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

STEP 6: IF temp->data > data of new node, Goto STEP 8

STEP 7: Move temp to next node: temp=temp->next and prev=temp. Goto STEP 5

STEP 8: Set: prev>next to newnode and newnode>next to temp.

STEP 9: EXIT

*/

void insert_sorted_list()

{

 int ele;

 node *newnode;

 node *prev,*temp;

 printf("Enter the element\n");

 scanf("%d",&ele);

 newnode=malloc(sizeof(node));

 newnode->data=ele;

 prev=start;

 temp=start;

 while(temp!=NULL)

 {

 if(temp->data>ele)

 {

 break;

 }

 else

 {

 prev=temp;

 temp=temp->next;

 }

 }

 prev->next=newnode;

 newnode->next=temp;

}

void traverse()

{

 node *temp=start;

 while(temp!=NULL)

 {

 printf("%d->",temp->data);

 temp=temp->next;

 }

}

void main()

{

insert_begining();

 insert_begining();

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

 traverse();

 insert_after();

 traverse();

 insert_sorted_list();

 traverse();

}

Deletion of an existing node from the linked list:

 Existing nodes from a singly linked list (SLL) can be deleted from any position. Specifically

following 2 cases are discussed:

(i) Deletion of node following a given node

(ii) Deletion of node matching item in the linked list

For first case, location is given after which node has to be deleted. For the second case, node matching

item is found and deleted. If such item does not exist, no nodes are deleted.

Case (i): C program for Deletion of a node following given node:

#include<stdio.h>

#include<stdlib.h>

typedef struct

{

 int data;

 struct node *next;

}node;

node *start=NULL;

void insert_node(int ele)

{

 node* newnode;

 newnode=malloc(sizeof(node));

 newnode->data=ele;

 newnode->next=start;

 start=newnode;

}

/**

Algorithm to delete a node after given location

 Step 1: Initialize count to 1

 Step 2: Initialize temp to start and declare cur as node pointer.

 Step 3: If temp is not NULL

 3.1.: Check count is same as user given node location (loc)

 3.2: If same Goto Step 4

 3.3: Move temp to temp->next

 3.4: Increment count

 3.5: Goto Step 3

Step 4: Assign cur as temp->next

Step 5: Assign temp->next to cur->next

Step 6: Free cur node

Step 7: Exit

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

**/

void delete_node_after(int loc)

{

 int cnt=1;

 node* temp=start,*cur;

 while(temp!=NULL)

 {

 if(cnt==loc)

 break;

 temp=temp->next;

 cnt++;

 }

 cur=temp->next;

 temp->next=cur->next;

 free(cur);

}

void display()

{

 node*temp=start;

 while(temp!=NULL)

 {

 printf("%d->",temp->data);

 temp=temp->next;

 }

}

void main()

{

 insert_node(20);

 insert_node(30);

 insert_node(21);

 display();

 delete_node_after(1);

 display();

}

Case (ii): C program for Deletion of a node with matching item:

#include<stdio.h>

#include<stdlib.h>

typedef struct

{

 int data;

 struct node *next;

}node;

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

node *start=NULL;

void insert_node(int ele)

{

 node* newnode;

 newnode=malloc(sizeof(node));

 newnode->data=ele;

 newnode->next=start;

 start=newnode;

}

/**

Algorithm to delete a node with matching item

 Step 1: Initialize temp and prev node pointers to start.

 Step 2: If temp is not NULL

 2.1.: Check temp->data and item

 2.2: If same Goto Step 3

 2.3: Assign prev as temp

 2.4: Assign temp as temp->next

 2.5: Goto Step 2

Step 3: Assign prev->next as temp->next

Step 4: Free temp node

Step 5: Exit

**/

void delete_match(int item)

{

 node*temp=start,*prev=start;

 while(temp!=NULL)

 {

 if(temp->data==item)

 break;

 prev=temp;

 temp=temp->next;

 }

 prev->next=temp->next;

 free(temp);

}

void display()

{

 node*temp=start;

 while(temp!=NULL)

 {

 printf("%d->",temp->data);

 temp=temp->next;

 }

}

void main()

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

{

 insert_node(20);

 insert_node(30);

 insert_node(21);

 display();

 delete_match(30);

 display();

}

Sorting Linked Lists:

Linked lists sorting involves arranging items inside the linked list is an order. The order can be

ascending or descending. A variation of bubble sort algorithm is presented, in which there are nested

loops. In outer loop, each element is passed from linked list and in inner loop its compared with all

remaining elements and on out of order, swapping is done. It is an inplace sorting, as existing linked

list is sorted and no new memory is required.

Algorithm for sorting linked lists:

STEP 1: REFER LIST BY A POINTER T

STEP 2: LET S=T->NEXT

STEP 3: IF S->DATA < T->DATA, SWAP S->DATA AND T->DATA

STEP 4 MOVE S to S->NEXT

STEP 5: IF S->NEXT==NULL,

 MOVE T to T->NEXT AND GOTO STEP 2

STEP 6: ELSE GOTO STEP 3

STEP 7: EXIT

C program for sorting of a linked list:

#include<stdio.h>

#include<stdlib.h>

typedef struct

{

 int data;

 struct node *next;

}node;

node *start=NULL;

void insert_node(int ele)

{

 node* newnode;

 newnode=malloc(sizeof(node));

 newnode->data=ele;

 newnode->next=start;

 start=newnode;

}

void sort_list()

{

 int temp;

 node*t=start,*s;

 while(t!=NULL)

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

 {

 s=t->next;

 while(s!=NULL)

 {

 if(s->data<t->data)

 {

 temp=s->data;

 s->data=t->data;

 t->data=temp;

 }

 s=s->next;

 }

 t=t->next;

 }

}

void main()

{

 insert_node(20);

 insert_node(30);

 insert_node(21);

 display();

 sort_list();

 display();

}

Merging Linked Lists:

 Merging is an operation to copy the nodes of two linked lists into a single linked list. There are

2 variations of such merging:

(i) Concatenation – Copy data from list1 followed by data from list 2

(ii) Sorted Merge – During copy make sure the lowest is copied and resulting output list

is sorted.

Algorithm-SIMPLE MERGE

STEP 1: REFER LIST1 BY A POINTER TEMP1

STEP 2: REFER LIST2 BY A POINTER TEMP2

STEP 3: IF TEMP1!=NULL

 3.1 ADD TEMP1 to END OF MERGEDLIST

 3.2 MOVE TEMP1=TEMP1->NEXT

 3.3 GOTO STEP3

STEP 4: IF TEMP2!=NULL

 4.1 ADD TEMP2 to END OF MERGEDLIST

 4.2 MOVE TEMP2=TEMP2->NEXT

 4.3 GOTO STEP4

STEP 5 EXIT

Corresponding C program:

#include<stdlib.h>

typedef struct

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

{

 int data;

 struct node *next;

}node;

node *start1=NULL,*start2=NULL,*start3=NULL;

node* insert_front(node*s,int ele)

{

 node* newnode;

 newnode=malloc(sizeof(node));

 newnode->data=ele;

 newnode->next=s;

 s=newnode;

 return s;

 }

 void display(node *s)

 {

 node*temp=s;

 while(temp!=NULL)

 {

 printf("%d->",temp->data);

 temp=temp->next;

 }

 printf("\b\b ");

 }

 node* concat(node*start1, node*start2,

 node *start3)

 {

 node* temp=start1,*temp3;

 node *newnode;

 //Append list1 to outputlist

 while(temp!=NULL)

 {

 newnode=malloc(sizeof(node));

 newnode->data=temp->data;

 newnode->next=NULL;

 if(start3==NULL)

 start3=newnode;

 else

 {

 temp3=start3;

 while(temp3->next!=NULL)

 temp3=temp3->next;

 temp3->next=newnode;

 }

 temp=temp->next;

 }

 //Appending List 2 to output list

 temp=start2;

 while(temp!=NULL)

 {

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

 newnode=malloc(sizeof(node));

 newnode->data=temp->data;

 newnode->next=NULL;

 if(start3==NULL)

 start3=newnode;

 else

 {

 temp3=start3;

 while(temp3->next!=NULL)

 temp3=temp3->next;

 temp3->next=newnode;

 }

 temp=temp->next;

 }

 return start3;

 }

 void main()

 {

 start1=insert_front(start1,22);

 start1=insert_front(start1,19);

 start1=insert_front(start1,15);

 display(start1);

 printf("\n");

 start2=insert_front(start2,23);

 start2=insert_front(start2,17);

 display(start2);

 printf("\n");

 start3=concat(start1,start2,start3);

 display(start3);

 }

Algorithm-SORTED MERGE

STEP 1: REFER LIST1 BY A POINTER TEMP1

STEP 2: REFER LIST2 BY A POINTER TEMP2

STEP 3: IF TEMP1!=NULL AND TEMP2!=NULL

 3.1: IF TEMP1->DATA<TEMP2->DATA

 3.1.1: ADD TEMP1 to MERGEDLIST,

 TEMP1=TEMP1->NEXT, GOTO STEP 3

 3.1.2: ELSE ADD TEMP2 to MERGEDLIST.

 TEMP2=TEMP2->NEXT, GOTO STEP 3

STEP 4: IF TEMP1!=NULL, COPY RESIDUAL NODES TO MERGEDLIST and EXIT

STEP 5 IF TEMP2!=NULL, COPY RESIDUAL NODES TO MERGEDLIST and EXIT

Corresponding C program:

#include<stdlib.h>

typedef struct

{

 int data;

 struct node *next;

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

}node;

node* start1=NULL,*start2=NULL,*start3=NULL;

node* insert_front(int ele,node*start)

{

 node* newnode;

 newnode=malloc(sizeof(node));

 newnode->data=ele;

 newnode->next=start;

 start=newnode;

 return start;

}

void display(node *st)

{

 node* temp=st;

 while(temp!=NULL)

 {

 printf("%d->",temp->data);

 temp=temp->next;

 }

}

void insert_end(int ele)

{

 node*temp=start3;

 node*newnode;

 newnode=malloc(sizeof(node));

 newnode->data=ele;

 newnode->next=NULL;

 if(temp==NULL)

 {

 start3=newnode;

 return;

 }

 while(temp->next!=NULL)

 temp=temp->next;

 temp->next=newnode;

}

void sorted_merge()

{

 node*temp1=start1;

 node* temp2=start2;

 node* temp3=start3;

 while(temp1!=NULL && temp2!=NULL)

 {

 if(temp1->data < temp2->data)

 {

 insert_end(temp1->data);

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

 temp1=temp1->next;

 }

 else

 {

 insert_end(temp2->data);

 temp2=temp2->next;

 }

 }

 while(temp1!=NULL) //copy residual nodes of list1

 {

 insert_end(temp1->data);

 temp1=temp1->next;

 }

 while(temp2!=NULL) //copy residual nodes of list2

 {

 insert_end(temp2->data);

 temp2=temp2->next;

 }

}

void main()

{

 start1=insert_front(22,start1);

 start1=insert_front(11,start1);

 start1=insert_front(10,start1);

 display(start1);

 printf("\n");

 start2=insert_front(16,start2);

 start2=insert_front(9,start2);

 display(start2);

 printf("\n");

 sorted_merge();

 display(start3);

}

Circular Linked List:
 Circular Linked List is a variation of Singly Linked List where last NODE is connected back

to first NODE instead of NULL. Eg:

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

Circular linked lists have a number of advantages over traditional linked lists.

• As there is no defined beginning or end to the list, data can be added and removed from the

list at any time. This makes circular linked lists ideal for applications where data needs to be

constantly added or removed, such as in a real-time application.

• Since data is stored in a ring-like structure, it can be accessed in a continuous loop. This makes

circular linked lists ideal for applications where data needs to be processed in a continuous

loop, such as in a real-time application or simulation.

• As there is no defined beginning or end to the list, circular linked lists are typically more

efficient than traditional linked lists when it comes to memory usage. This is because

traditional linked lists often require additional memory for pointers that point to the beginning

and end of the list. Circular linked lists, on the other hand, only require a single pointer to be

stored in memory – the head pointer.

• Circular linked lists are often easier to implement than traditional linked lists. This is because

traditional linked lists often require the use of additional data structures, such as stacks and

queues, to keep track of the list's beginning and end. Circular linked lists, on the other hand,

only require a singly linked list data structure.

Implementation of various operations of circular linked list:

#include<stdlib.h>

typedef struct

{

 int data;

 struct node *next;

} node;

node *start=NULL;

//Insert a NODE to the beginning of Circular Linked List

void insert_begining(int ele)

{

 node* newnode,*temp;

 newnode=malloc(sizeof(node));

 newnode->data=ele;

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

 if(start==NULL) //Nothing is der

 {

 start=newnode;

 newnode->next=start;

 return;

 }

 else //Something is der

 {

 temp=start;

 while(temp->next!=start)

 {

 temp=temp->next;

 }

 temp->next=newnode;

 newnode->next=start;

 start=newnode;

 }

}

//Insert a NODE to the end of Circular Linked List

void insert_end(int ele)

{

 node* temp=start;

 node* newnode;

 newnode=malloc(sizeof(node));

 newnode->data=ele;

 if(start==NULL)

 {

 start=newnode;

 start->next=start;

 return;

 }

 while(temp->next!=start)

 {

 temp=temp->next;

 }

 temp->next=newnode;

 newnode->next=start;

}

//Insert a NODE to a specific position of the Circular Linked List

void insert_specific_position(int ele,int loc)

{

 int cnt=1;

 node* temp=start;

 node* newnode;

 newnode=malloc(sizeof(node));

 newnode->data=ele;

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

 newnode->next=NULL;

 while(temp->next!=NULL)

 {

 if(cnt==loc)

 break;

 cnt++;

 temp=temp->next;

 }

 newnode->next=temp->next;

 temp->next=newnode;

}

//Deleting a NODE at the beginning of Circular Linked List

void delete_front()

{

 node*cur=start,*temp=start;

 while(temp->next!=start)

 temp=temp->next;

 start=start->next;

 temp->next=start;

 free(cur);

}

//Deleting a NODE at the end of Circular Linked List

void delete_end()

{

 node*prev=start,*temp=start;

 while(temp->next!=start)

 {

 prev=temp;

 temp=temp->next;

 }

 prev-> next=start;

 free(temp);

}

//Deleting a NODE at the specific position of Circular Linked List

void delete_specific_pos(int loc)

{

 node*temp=start,*prev=start;

 int cnt=1;

 while(temp->next!=start)

 {

 if(cnt==loc)

 break;

 cnt++;

 prev=temp;

 temp=temp->next;

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

 }

 prev->next=temp->next;

 free(temp);

}

//Displaying (Traversing) a Circular Linked List

void display()

{

 node*temp=start;

 while(temp->next!=start)

 {

 printf("%d->",temp->data);

 temp=temp->next;

 }

 printf("%d->",temp->data);

}

//Main driver program

void main()

{

 insert_begining(20);

 insert_begining(30);

 insert_end(40);

 insert_specific_position(19,2);

 display();

 printf("\n");

 // delete_end();

 // delete_front();

 delete_specific_pos(2);

 display();

}

Doubly Linked List (DLL):
A doubly linked list is a bi-directional linked list. Hence one can traverse it in both directions. Unlike

singly linked lists, its nodes contain one extra pointer called the previous pointer. This pointer points

to the previous node.

Eg:

It is advantageous over other data structures because it allows for quick insertion and deletion of

elements. Additionally, it is easy to implement and can be used in a variety of applications.

https://www.simplilearn.com/tutorials/data-structure-tutorial/doubly-linked-list
https://www.simplilearn.com/tutorials/c-tutorial/pointers-in-c

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

Implementation of various operations of DLL:

#include<stdlib.h>

typedef struct

{

 int data;

 struct node*prev;

 struct node*next;

}node;

node*start=NULL;

//Inserting a node at front of DLL

void insert_front(int ele)

{

 node*newnode;

 newnode=malloc(sizeof(node));

 newnode->data=ele;

 newnode->prev=NULL;

 newnode->next=NULL;

 if(start==NULL)

 start=newnode;

 else

 {

 newnode->next=start;

 start->prev=newnode;

 start=newnode;

 }

}

//Inserting a node at end of DLL

void insert_end(int ele)

{

 node*newnode,*temp=start;

 newnode=malloc(sizeof(node));

 newnode->data=ele;

 newnode->prev=NULL;

 newnode->next=NULL;

 if(start==NULL)

 start=newnode;

 else

 {

 while(temp->next!=NULL)

 temp=temp->next;

 temp->next=newnode;

 newnode->prev=temp;

 }

}

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

//Inserting a node after the specified position in the DLL

void insert_specific_position(int pos,int ele)

{

 node*newnode,*temp=start,*ntemp;

 int cnt=1;

 newnode=malloc(sizeof(node));

 newnode->data=ele;

 newnode->prev=NULL;

 newnode->next=NULL;

 while(temp->next!=NULL)

 {

 if(cnt==pos)

 break;

 cnt++;

 temp=temp->next;

 }

 ntemp=temp->next;

 newnode->next=ntemp;

 temp->next=newnode;

 newnode->prev=ntemp;

 ntemp->prev=newnode;

 }

//Deleting a node at front of DLL

void delete_front()

{

 node *temp=start;

 start=start->next;

 start->prev=NULL;

 free(temp);

}

//Deleting a node at end of DLL

void delete_rear()

{

 node* temp=start,*ntemp;

 while(temp->next!=NULL)

 temp=temp->next;

 ntemp=temp->prev;

 ntemp->next=NULL;

 free(temp);

}

//Deleting a node in the specified position of DLL

void delete_specific_pos(int pos)

{

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

 node*temp=start,*ntemp,*ftemp;

 int cnt=1;

 while(temp->next!=NULL)

 {

 if(cnt==pos)

 break;

 cnt++;

 temp=temp->next;

 }

 ntemp=temp->prev;

 ntemp->next=temp->next;

 ftemp=temp->next;

 ftemp->prev=ntemp;

 free(temp);

}

//Displaying a DLL

void display()

{

 node *temp=start;

 while(temp!=NULL)

 {

 printf("%d->",temp->data);

 temp=temp->next;

 }

}

//Reversing a DLL

void reverse_list()

{

 node *temp=start;

 while(temp->next!=NULL)

 temp=temp->next;

 while(temp!=NULL)

 {

 printf("%d<-",temp->data);

 temp=temp->prev;

 }

}

//Main driver for various operations of DLL

void main()

{

 insert_front(20);

 insert_front(30);

 insert_end(50);

 insert_end(11);

 insert_specific_position(2,33);

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

 delete_specific_pos(2);

 display();

 printf("\n");

 reverse_list();

}

Header Linked Lists (HLL)

Linked lists in which starting node is a special node called Header node. Header node does not have

any data. It is used to connect to the other nodes. Eg:

The header node does not represent an item in the linked list. This data part of this node is generally

used to hold any global information about the entire linked list. The next part of the header node

points to the first node in the list.

A header linked list can be divided into two types:

• Grounded header linked list that stores NULL in the last node’s next field.

• Circular header linked list that stores the address of the header node in the next part of the

last node of the list.

Advantages of Header Linked lists:

(i) Coding of insertion and deletion becomes easier as one need not worry about nothing or

something is there in the linked list.

(ii) Further header node data can be used to record number of nodes in the linked list. Hence

to know the number of nodes, one need not traverse linked list again and again.

Implementation of various operations of HLL:

#include<stdlib.h>

typedef struct

{

 int data;

 struct node*next;

}node;

node *head;

//Creating Header Node

void create_header_node()

{

 head=malloc(sizeof(node));

 head->next=NULL;

}

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

//Inserting a node to front of HLL

void insert_front(int ele)

{

 node* newnode;

 newnode=malloc(sizeof(node));

 newnode->data=ele;

 newnode->next=head->next;

 head->next=newnode;

}

//Inserting a node to end of HLL

void insert_end(int ele)

{

 node* newnode,*temp=head;

 newnode=malloc(sizeof(node));

 newnode->data=ele;

 newnode->next=NULL;

 while(temp->next!=NULL)

 temp=temp->next;

 temp->next=newnode;

}

//Displaying all the nodes of HLL (Traversal)

void display()

{

 node*temp=head->next;

 while(temp!=NULL)

 {

 printf("%d->",temp->data);

 temp=temp->next;

 }

}

//Deleting a node at the front of HLL

void delete_front()

{

 node*temp=head->next;

 head->next=temp->next;

 free(temp);

}

//Deleting a node at the end of HLL

void delete_end()

{

 node*temp=head,*prev=head;

 while(temp->next!=NULL)

 {

 prev=temp;

 temp=temp->next;

 }

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

 prev->next=NULL;

 free(temp);

}

//Main program driver to demonstrate various operations of HLL

void main()

{

 create_header_node();

 insert_front(40);

 insert_front(22);

 insert_end(23);

 insert_end(10);

 delete_front();

 delete_end();

 display();

}

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

Module-4

Trees

Overview of a Tree:

A tree is a nonlinear hierarchical data structure that consists of nodes connected by edges. Other data

structures such as arrays, linked list, stack, and queue are linear data structures that store data

sequentially. In order to perform any operation in a linear data structure, the time complexity increases

with the increase in the data size. This behaviour is not acceptable in today's computational world.

Different tree data structures allow quicker and easier access to the data as it is a non-linear data

structure.

Eg: A Tree with 8 nodes having 4 levels. Different nodes connected with parent-child relationship.

These trees grow top down and special node at the top is called root.

Real time Trees:

Various applications of trees do exist in real time and are as follows:

(i) Folders-Files hierarchy in Operating system and cloud:

(ii) Every company/institution has an organization chart that shows the flow of authority in

the organization. Such an organization chart is depicted below:

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

(iii) Computers/ computing devices are interconnected to form a computer network as

follows:

(iv) The website for any firm/organization/industry will have various webpages

organized as a tree fashion shown next:

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

(v) Most trending network of the present era is the social network which is modelled as

a tree with subscribers as nodes and their relationship as edges.

Ancestor and Descendant Trees:

Ancestor Tree is a tree in which children of each node are its ancestors. Hence path from root to any

node gives the list of ancestors. One such ancestor tree is as follows. In this example, ancestors of

Kevin are: John, Terry (level1), Jack, Mary, Anthony, Karen (level2).

Descendant Tree is a tree in which children of each node are its descendants. Hence path from root

to any node gives the list of descendants. One such descendant tree is as follows. In this example,

descendants of Osco-Umbrian are: Osco and Umbrian.

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

Ancestor Tree

Descendant Tree

Definition of a tree:

A tree is a finite set of one or more nodes such that:

(1) Specially designated node called root

(2) Remaining nodes are partitioned into n disjoint sets, each of which are subtrees

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

Tree Terminologies:

Consider an example tree for stating various terminologies:

Node of a tree: Any item which as information and branch to other node. In case of leaf node,

branch is NULL. Eg: in Node C, information is C and branch is to D.

Degree of a node: The number of subtrees of any node is its degree. Eg. B has degree 2 as it has 2

subtrees. If the degree of any node is 0, it is called Leaf Node. If degree of a node is non-zero, it is

called Non-terminal node.

Siblings: Children of the same parent are called siblings. E and F are siblings as they are children of

the same parent B.

Degree of a tree – max degree of any node is called its degree.

Ancestors: Ancestors of any node is the list of nodes in the path from root to that node.

Level: Level of a tree starts with 1 at root node. Subsequently number increases with other

descendants.

Height of a tree: Max level of a tree is the height of a tree.

Representation of Trees:

There are 3 ways of representing trees:

(i) List Representation

(ii) Leftchild, right sibling representation

(iii) Binary Tree (degree two) representation

(i) List Representation:

In the list representation, level by level traversal is performed. For each node a linked list is created

for its immediate children. For non-terminal nodes, data is left empty and pointer extended in next

level. For leaf nodes., pointer portion of node in the linked list is made 0 (NULL).

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

Eg: For tree

:

Linked list representation proceeds as follows:

(ii) Left child -right sibling representation

In left child-right sibling representation, any node will be converted to have only left child. The right

child is reconnected as right sibling. The structure of any node in the tree is:

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

Eg: For tree

:

Left-child Right sibling representation proceeds as follows:

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

(ii) Binary Tree representation:

In the binary tree representation, each node can contain max two children. To get such a

representation, tree is first converted to left-child, right sibling representation. Using such a

representation, each right sibling is converted to right subtree.

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

Eg: For tree

:

Binary Tree representation proceeds as follows:

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

Binary Trees:
A binary tree is a finite set of nodes that is either empty or consists of root node and two disjoint

binary trees called left subtree and right subtree. Each node of a binary tree consists of three items:

• data item

• address of left child

• address of right child

Types of Binary Tree

1. Full Binary Tree

A full Binary tree is a special type of binary tree in which all the nodes have two children except the

leaf nodes. Eg. full binary tree. This binary tree is a full binary tree as all the nodes except the leaf

nodes have two children.

.

2. Complete Binary Tree:

A binary tree is said to be a complete binary tree when all the levels are completely filled except the

last level, which is filled from the left. Eg. of complete binary tree – in this tree all levels are filled

making it complete binary tree.

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

The complete binary tree is similar to the full binary tree except for the two differences which are

given below:

o The filling of the leaf node must start from the leftmost side.

o It is not mandatory that the last leaf node must have the right sibling.

3. Skewed Trees:

A binary tree can be called a skewed binary tree if all nodes have one child or no child at all. They

can be of two types:

• Left Skewed Binary Tree

• Right Skewed Binary Tree

Left Skewed Binary Tree

If all nodes are having a left child or no child at all then it can be called a left skewed binary tree. In

this tree all children at right side remain null.

Right Skewed Binary Tree

If all nodes are having a right child or no child at all then it can be called a right skewed binary tree.

In this tree all children at left side remain null.

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

Abstract Data Type of a binary tree:

ADT Binary_Tree:

 objects: finite set of nodes either empty or consisting of root node, left subtree and right subtree

Functions:

Trees v/s Binary Trees:

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

Binary Tree Representations:

There are 2 ways of representing binary trees:

i. Using Arrays

ii. Using Linked List

(i) Array Representation:

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

In this representation, an array is declared with size being (n+1) for an n node tree. First

location of array (index 0) is empty. For remaining indices, elements will be filled such that following

relationship is maintained for an node with index ‘i' in the array.

For example tree:

 Array Representation is done as follows:

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

For example tree:

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

Array representation is done as follows:

Pros and cons of array representation:

(ii) Linked List representation:

In the Linked List representation, for each node in the tree, a node in the linked list is created. Each

node of linked list consists of following structure:

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

C programming language struct for the node is as follows:

typedef struct

{

 int data;

 struct node *leftChild;

 struct node *rightChild;

}node;

Hence for all nodes in the tree, nodes in the linked list is created. Later left and right child connectivity

through pointers are drawn.

For example tree:

 LinkedList Representation is done as follows:

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

For example tree:

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

LinkedList representation is done as follows:

Binary Tree Traversal:

Traversal of a tree is a technique in which all nodes are visited. The order in which they are visited

gives different traversal techniques:

(i) Inorder:

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

In the Inorder traversal, node comes in between left and right child. Hence technique is to go to

dead left and start printing nodes in LNR fashion for each subtree. The C recursive procedure for

inorder traversal is:

void inorder(treePointer ptr)

{

 if(ptr)

 {

 inorder(ptr->leftChild);

 printf(“%d”,ptr->data);

 inorder(ptr->rightChild);

 }

}

Example inorder traversal for the tree:

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

(ii) Preorder:

In the preorder traversal, node is printed in the path it is traversed towards left and right subtrees.

Hence technique is NLR (Node Left Right). The C recursive procedure for preorder traversal is:

void preorder(treePointer ptr)

{

 if(ptr)

 {

 printf(“%d”,ptr->data);

 preorder(ptr->leftChild);

 preorder(ptr->rightChild);

 }

}

Example preorder traversal for the tree:

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

(iii) Post order:

In the postorder traversal, left and right subtrees are completely traversed and then nodes are printed.

Hence technique is LRN (Left Right Node). The C recursive procedure for postorder traversal is:

void postorder(treePointer ptr)

{

 if(ptr)

 {

 postorder(ptr->leftChild);

 postorder(ptr->rightChild);

 printf(“%d”,ptr->data);

 }

}

Example postorder traversal for the tree:

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

Level-order traversal:

In the level order traversal of a tree, the nodes are visited level by level starting from level-1. In

each level, nodes are visited left to right. C procedure for level-order traversal is:

void levelorder(treePointer ptr)

{

 treePointer queue[MAX_SIZE];

 if(!ptr) return;

 addq(ptr);

 for(;;)

 {

 ptr=deleteq();

 if(ptr)

 {
 printf(“%d”,ptr->data);

 if(ptr->leftChild)

 addq(ptr->leftChild);

 if(ptr->rightChild)

 addq(ptr->rightChild);

 }

else

 break;

}

}

Example level-order traversal for the tree:

DATA STRUCTURES AND APPLICATIONS DEPT. OF AIML

