
 
 

 
 

Microcontrollers and Embedded Systems – Module 1  

  

  

  

  



Differences between Microprocessors and Microcontrollers 
 

Parameter  Microprocessor Microcontroller 

Definition IC that has only CPU 
inside it and RAM, ROM 
and other peripherals need 
to be added externally 

IC that has integration of 
CPU RAM, ROM and 
other peripherals 

Tasks used  General purpose Specific purpose 

Preference Relationship between 
input and output is not 
clearly defined 

Relationship between 
input and output is clearly 
defined 

Suitability for embedded 
applications 

Not suitable Ideally suitable due to low 
power consumptions 

Price Costlier Cheaper 

Speed High (1Ghz) Slow (20-50Mhz) 

Memory External (in GBs) KBs of internal for RAM 
and ROM 

 

ARM Features: 
 
❖ ARM stands for Advanced RISC Machine. It is one of the most licensed and 

extensive processor cores in the world. 
❖ Specially used in portable devices like digital cameras, mobile phones, home 

network modules, wireless communication technologies, etc.. 
❖ Advanced RISC Machine Architecture is better than x86.  
❖ ARM Processor is not only limited to mobile phones but is also used in 

Fugaku, the world’s fastest supercomputer. 
❖ ARM can be used as a microprocessor, microcontroller and both. 

 

RISC vs CISC architectures: 
        RISC and CISC are two different types of computer architectures that are used 
to design the microprocessors that are found in computers. The fundamental 
difference between RISC and CISC is that RISC (Reduced Instruction Set 

Computer) includes simple instructions and takes one cycle, while the CISC 

(Complex Instruction Set Computer) includes complex instructions and takes 
multiple cycles. 
 
 
 
 

 



Sl. 
No. 

RISC CISC 

1. It stands for Reduced Instruction 
Set Computer. 

It stands for Complex Instruction Set 
Computer. 

2. It is a microprocessor 
architecture that uses small 
instruction set of uniform 
length. 

This offers hundreds of instructions of 
different sizes to the users. 

3. These simple instructions are 
executed in one clock cycle. 

This architecture has a set of special 
purpose circuits which help execute the 
instructions at a high speed. 

4. These chips are relatively simple 
to design. 

These chips are complex to design. 

5. They are inexpensive. They are relatively expensive. 

6. Examples of RISC chips include 
SPARC, POWER PC. 

Examples of CISC include Intel 
architecture, AMD. 

7. It relies on the intelligence of 
software and has less complex 
hardware 

It relies on hardware complexity 

8. It has fixed-length encodings for 
instructions. 

It has variable-length encodings of 
instructions. 

9. Simple addressing formats are 
supported. 

The instructions interact with memory 
using complex addressing modes. 

10. It doesn't support arrays. It has a large number of instructions. It 
supports arrays. 

11. It doesn't use condition codes. Condition codes are used. 

12. Registers are used for procedure 
arguments and return 
addresses. 

The stack is used for procedure 
arguments and return addresses. 

 
 

Design Rules of RISC Processor 
The different major design rules that a RISC processor includes are as follows: 

1. Instructions: RISC exhibit reduced instruction sets approach. In this 
case, there are various simple instructions each having a fixed length so 
one instruction will get executed in a single cycle. This supports the 
parallel operation. In CISC, the instructions are of multiple sizes and this 
makes the parallelism in operation quite difficult. 



2. Synthesis: Since few instructions are supported, many other instructions 
are synthesized from existing instructions. This can also lead to code 
bloating. However, CISC supports multiple instructions and makes 
programs simpler.  

3. Fixed instruction size: RISC was designed with all instructions of the 
same length. This helps in prefetching of instructions while current 
instructions are being executed. However, CISC has variable instruction 
length and multiple clock cycles might be required.  

4. Pipelining: RISC facilitates instruction pipelining. Basically, here the 
various subdivided instructions into simple ones are executed parallelly 
in pipelined format. Through pipelining, during decoding of previous 
instruction, the next one can be fetched and this provides advancement in 
operation in each cycle thereby offering maximal throughput. 

5. Registers: The way the RISC processor operates there exists a 
requirement of large memory space and thus, it includes a large general-
purpose register set. There is no specified register for data or address as 
here the registers act as a local storage destination for all operations. 

6. Load-store technique: The whole operation takes place through the data 
existing in the register. In this case, using individual load and store 
instructions data is moved between register and memory. This provides 
an advantage in terms that unnecessarily, multiple memory accesses will 
not be required. Direct memory access is prohibited in RISC.  
 

ARM Design Philosophy 
There are a number of physical features that have driven the ARM processor design. 

1. Small to reduce power consumption and extend battery operation 
2. High code density 
3. Price sensitive and use slow and low-cost memory devices. 
4. Reduce the area of the die taken up by the embedded processor. 
5. Hardware debug technology 
6. ARM core is not a pure RISC architecture 

 

Instruction Set for Embedded Systems 
The ARM instruction set differs from the pure RISC definition in several ways  

that make the ARM instruction set suitable for embedded applications: 
■ Variable cycle execution for certain instructions—Not every ARM instruction 
executes in a single cycle. For example, load-store-multiple instructions vary in the 
number of execution cycles depending upon the number of registers being 
transferred. 
■ Inline barrel shifter leading to more complex instructions—The inline barrel 
shifter is a hardware component that preprocesses one of the input registers before 
it is used by an instruction. 
■ Thumb 16-bit instruction set—ARM enhanced the processor core by adding a 
second 16-bit instruction set called Thumb that permits the ARM core to execute 
either 16- or 32-bit instructions. 



■ Conditional execution—An instruction is only executed when a specific condition 
has been satisfied. 
■ Enhanced instructions—The enhanced digital signal processor (DSP) instructions 
were added to the standard ARM instruction set to support fast 16×16-bit multiplier 
operations and saturation. 
 

Embedded Systems Hardware based on ARM 
       An embedded system is a combination of computer hardware and software 
designed for a specific function. Embedded systems may also function within a 
larger system. The systems can be programmable or have a fixed functionality.  
 

 
Figure: Embedded Systems Hardware architecture 

 
The architecture for ARM based Embedded systems hardware is depicted. It 
consists of ARM processor for execution of instructions. The data flow from ARM 
can be with external memory. External memory can be in the form of SRAM, 
FLASH and DRAM. The external memory is accessed using ARM High Speed bus 
(AHB). Since multiple requests for same bus might exist, there is an AHB Arbiter 
who will decide the accessibility to the AHB.  Further, interrupts might be caused 
by devices and are managed through Interrupt controllers. The low speed devices 
like the peripherals, UART devices, Ethernet drivers and the like are accessed 
through ARM Peripheral bus. There exists a bridge between AHB and APB for 
transition of bus speeds.  
 

 ARM Bus Technology 

     Embedded systems use different bus technologies. The most common PC bus 
technology, the Peripheral Component Interconnect (PCI) bus, logy is external or 



off-chip. However, embedded devices use an on-chip bus that is internal to the chip 
and allows different peripheral devices to be interconnected with an ARM core. 
There are two different classes of devices attached to the bus. 

• Bus master(ARM processor core)—a logical device capable of initiating a 
data transfer with another device across the same bus. 

• Bus slaves(Peripherals)—logical devices capable only of responding to a 
transfer request from a bus master device. 

A bus has two architecture levels. 
1. physical level — that covers the electrical characteristics and bus width (16, 

32, or 64 bits). 
2. Second level deals with protocol—the logical rules that govern the 

communication between the processor and a peripheral. 
 

ARM Bus Architecture (AMBA): 

 
 

ASB     ARM System Bus is used for connecting internal communication in the embedded 
systems designed with ARM. AHB – ARM High Performance Bus with larger 
bandwidths (64 /128 bit) is used to connect with external memory. Multi-layer AHB 
and AHB Lite is also provided to support variable speed accesses to external 
components. APB – ARM Peripheral Bus with slower bandwidth to devices like 
peripherals. AHB New interconnects supports multiple processors, supporting 
operations in parallel 
 

Memory of Embedded System 

An embedded system has to have some form of memory to store and execute code. 
There exists a storage tradeoff in the memory as shown. If memory size is 
increased, storage capacity increased but performance with respect to memory 
access time degrades. 



 
The number of cycles required for fetching ARM and Thumb instructions is given 
as: 

 
 

Types of Memory 
 Read-only memory (ROM) is the least flexible of all memory types because it 

contains an image that is permanently set at production time and cannot be 
reprogrammed. Many devices also use a ROM to hold boot code. 

 Flash ROM can be written to as well as read.  It is slow to write. Its main use 
is for holding the device firmware. The erasing and writing of flash ROM are 
completely software controlled. 

 Dynamic random-access memory (DRAM) is the most commonly used 
RAM for devices. It has the lowest cost per megabyte. DRAM is dynamic it 
needs to have its storage cells refreshed and given a new electronic charge 
every few milliseconds, so you need to set up a DRAM controller before using 
the memory. 

 Static random-access memory (SRAM) is faster. The RAM does not require 
refreshing. The access time is shorter. Higher cost. 

 Synchronous dynamic random-access memory (SDRAM) run at much 
higher clock speeds and it synchronizes itself. 

 

Peripherals 
• Forms the outside world interaction of Embedded Systems. 



• A peripheral device performs input and output functions for the chip by 
connecting to other devices that are off-chip. 

• Each peripheral device usually performs a single function. 
• Peripherals range from a simple serial communication to complex 802.11 

wireless device. 
• All ARM peripherals are memory mapped—the programming interface is a 

set of memory-addressed registers. 
• Specialized peripherals called as Controllers that implement higher levels of 

functionality. Two important types 
1. Memory controllers 
2. Interrupt controllers. 

 

Memory Controllers 
• Connect different types of memory to the processor bus. 
• On power-up a memory controller is configured in hardware to allow 

certain memory devices to be active. 
• Some memory devices must be set up by software. 

 

Interrupt Controllers 
  Interrupts are raised to gain attention. In this case, interrupts raised by 
peripherals to get attention of ARM processor. Interrupts go through Interrupt 
controllers. There are two types of interrupt controller available for the ARM 
processor: 

1. Standard interrupt controller (SIC). 
2. Vector interrupt controller (VIC). 

 

Working of Standard Interrupt Controller (SIC): 

 
Hence SIC has option to either ignore or allow interrupts being raised by 
peripherals.  
 

Working of Vector Interrupt Controller (VIC): 
 



The working of Vector Interrupt Controller is as follows: 
 

 
Hence interrupts are masked or serviced based on priorities. There exists a vector 
table which is looked up for interrupt handling.  
 

Embedded System Software 
The software stack of embedded system is depicted as shown: 

 
An embedded system gets into action by first executing boot code (initialization 
code). t sets up memory devices, caches, peripheral devices Deals with 
administrative work before actual OS image is loaded.  
 
Phase-1: Initialize hardware configuration be reorganizing memory 



 
As can be seen, the memory types are reorganized as FAST SRAM at lowest address, 
followed by DRAM, Boot ROM and I/O Registers.  
 
Phase-2: Diagnostics 
     In this phase, diagnosis happens whether hardware is working or not. This helps 
in isolating faults.  
 
Phase-3: Booting an image 
In this phase, relevant OS image is loaded. Copy code and/or data into RAM.  
Sometimes image decompression is required. This is complex when task is to boot 
from multiple OS images.  

 

Operating Systems 
        OS is like manager which manages various resources like memory, processor 
and peripherals. ARM has more than 50 OS, but 2 categories: RTOS and PSOS. 
Real Time Operating Systems (RTOS): 

 It has deadlines and guaranteed response.  
 Hard RTOS provides guaranteed response 
 Soft RTOS provides good response 
 RTOS do not have secondary storage. 

           Platform Specific Operating Systems (PSOS): 
 No deadlines 
 Large exclusive memory manager for real time applications 
 Tend do have secondary storage 

 
      



Applications 
An application implements a processing task; the operating system controls the 
environment. An embedded system can have one active application or several 
applications running simultaneously. In contrast, ARM processors are not found in 
applications that require leading-edge high performance. Because these applications 
tend to be low volume and high cost, ARM has decided not to focus designs on these 
types of applications.  
 

ARM Core Processor Components 
    It is the view of programmer. Data flow through various functional units is shown. 
Bus communication is also depicted in the ARM Core processor component 
architecture. The data or instruction can be fed. In case of instruction, decoding 
happens through instruction decoder. The data is sign extended if required or 
loaded into general purpose registers (r0-r15). Instructions are executed by 
Arithmetic and Logical Units. They are coupled with barrel shifting operations. For 
some of the instructions, accumulator contents may also be added. Program Counter 
(PC) contains the address of the next instruction to be executed. Separate buses are 
used to communicate between registers and ALU/MAC units.  

 
 

ARM Registers 
    Basically, there are two types of ARM registers – General purpose registers and 
Special purpose registers. General-purpose registers hold either data or an address. 
The letter r is prefixed to the register number to identify them. For example, the label 
r4 is assigned to register 4.  The registers are 32 bits in size. Up to 18 active registers 



are available: 16 data registers and 2 processor status registers. The data registers are 
labeled r0 through r15 by the programmer. The ARM processor contains three 
registers: r13, r14, and r15, each of which is allocated to a specific duty or unique 
function.   

 Register r13 is traditionally used as the stack pointer (SP) and stores the head 
of the stack in the current processor mode.  

 Register r14 is called the link register (LR) and is where the core puts the 
return address whenever it calls a subroutine.  

 Register r15 is the program counter (PC) and contains the address of the next 
instruction to be fetched by the processor. 

 
 
CPSR (Current Processor Status Register) 
•Current processor status register (CPSR) contains the current status of the 
processor. 
•This includes various conditional code flags, Interrupt Status Processor mode and 
other status and control information. 
 
•The exception modes also have a saved processor status register (SPSR), that is 
used to preserve the value of CPSR when the associated exception occurs. 
•Because the User and System modes are not exception modes, there is no SPSR 
available. 
 
SPSR (Saved Processor Status Register) 
In the exception modes there is an additional Saved Processor Status register (SPSR) 
which holds information on the processor’s state before the system changed into this 
mode i.e., the processor status just before an exception. 
 
 

Program Status Register 
   The composition of Program Status Register is as shown. 

 
 
Processor modes can be Privileged or Non-privileged. In privileged mode- full read-
write access to CPSR is provided. In non-privileged mode read only access is 
provided.  
 

https://roboticelectronics.in/current-program-status-register-cpsr-in-arm7/


Processor Modes 
Processor Mode Explanation Type 

Abort Failure to access memory Privileged 

Fast Interrupt 
Request 

Peripherals signaling attention 
of processor with high priority 

Privileged 

Interrupt Request Peripherals signaling attention 
of processor with normal 
priority 

Privileged 

Supervisor OS mode Privileged 

System Special version of user mode 
that allows full readwrite 
access to the user 

Privileged 

undefined Wrong instruction Privileged 

User Enter user mode Non-Privileged 

 

Banked Registers 

 
There exists 37 registers in the register file. Of those, 20 registers are hidden from a 
program at different times. These registers are called banked registers and are 



identified by the shading in the diagram. They are available only when the processor 
is in a particular mode; for example, abort mode has banked registers r13_abt, 
r14_abt and spsr_abt. Banked registers of a particular mode are denoted by an 
underline character post-fixed to the mode mnemonic or _mode. 
 

Changing mode on Exception 
      Interrupts and exceptions changes mode. Reset, interrupt request, fast interrupt 
request, software interrupt, data abort, prefetch abort, undefined instruction. Every 
processor mode except user mode can change mode by directly writing to CPSR. 
Processor modes can be changed by program or hardware. Saved program status 
register stores previous modes CPSR. SPSR is only modified with privileged mode 
and only done when hardware changes processor mode. 

 
 

Processor Mode values 
   Each processor mode is assigned a 5 bit binary value as shown: 



 
 

 
Hence there are 3 types of ARM Instruction Sets: ARM, THUMB and JAZELLE.  
 

ARM vs THUMB 

 
 



 

 
 

Interrupt Mask 
   An internal switch setting that controls whether an interrupt can be processed or 
not. The mask is a bit that is turned on and off by the program. If interrupt is allowed 
it is said to be serviced.  
 

Condition Flags 
   There exist many condition flags affected directly and indirectly by the 
instructions. Majority of these flags are affected by ALU operations. Conditional 
execution will determine whether ARM processor will execute a specific instruction 
or not.  

  

 
 

 

ARM 3 Stage Pipeline 
 

    3 Stage pipeline follows Fetch-Decode and Execute model as shown. Fetch process 
fetches an instruction from memory. Decode identifies the instruction. Execute 
executes the instruction and writes result back to register 

 
 



 

 
 
Example pipeline sequence: 

 
It can be inferred from pipeline sequence that 3 instructions are in pipeline 
ADD, SUB and CMP. It can be observed that when ADD enters Decode stage, 
SUB is fetched. Further when ADD moves to Execute Stage, SUB is decoded 
and CMP is fetched. Similarly, 5 stage and 7 stage pipelines can be created. 
 
5 stage pipeline: 

 
 
7 stage pipeline: 

 
      
      Increased pipeline length is a tradeoff between performance and latency. If 
pipeline length is increased performance improves, but an instruction requires more 
waiting time while moving between stages.  
 
 
 
 



Pipeline Executing characteristics 

 
It can be observed that MSR – an instruction that moves contents from status register 
to normal register is an interrupt instruction as user mode is switched to OS mode. 
Interrupt also forms part of pipeline and interrupt handling happens after Execution 
stage.  
 

Pipelines and Program counter: 

 
It can be observed that Program Counter gets updated to next instruction plus the 
number of instructions in pipeline. Execution of branch instruction causes ARM core 
to flush its pipeline. Loading the new branch address prior to the execution of 
instruction. Instruction in the execute stage will complete even though an interrupt 
has been raised. 



 

Exceptions and Interrupts  
      Exceptions and interrupts are unexpected events that disrupt the normal flow of 
instruction execution. An exception is an unexpected event from within the 
processor. An interrupt is an unexpected event from outside the processor. When an 
exception or interrupt occurs, the hardware begins executing code that performs an 
action in response to the exception. This action may involve killing a process, 
outputting a error message, communicating with an external device, or horribly 
crashing the entire computer system by initiating a "Blue Screen of Death" and 
halting the CPU. The instructions responsible for this action reside in the operating 

system kernel, and the code that performs this action is called the interrupt handler 
code. You can think of handler code as an operating system subroutine. After the 
handler code is executed, it may be possible to continue execution after the 
instruction where the execution or interrupt occurred. 
When exception or interrupt, processor sets pc to special address from vector table. 

 
 

ARM Extensions 
ARM processor is given extensions to improve performance, do extra functionality 
and provide flexibility. 3 ARM extensions exist and are: (i) Cache and Tightly 
coupled memory (ii) Memory Management and (iii) Coprocessors 



 
 
Unified Cache Management using Von-Neuman architecture: 

 
In this cache management technique, single cache is shared by data and instruction. 
Hence it is said to follow Von-Nueman architecture and a single bus is provided to 
access the cache for data or instruction.  
 
Separate cache management based on Harvard Architecture: 

 



In this cache management scheme, 2 separate caches are provided for data and 
instruction. Data and instruction cache are accessed by ALU using separate bus and 
hence this cache management scheme is based on Harvard Architecture. However 
to access external main memory common bus is used.  
 
Cache Management with Tightly Coupled Memory: 

 
In this cache management, tightly coupled cache is additionally provided which acts 
like shared memory for processes. This Tightly coupled cache is separately provided 
for data and instructions. There also exists separate data and instruction cache for 
high speed access.  
 

ARM Core Memory Management Hardwares 
 Nonprotected memory 
 Memory Protection Units (MPU) with limited protection.  
 Memory Management Units (MMU) with full protection 

 

Coprocessors 
• A co-processor is many times referred as a Math Processor. As the coprocessor 

performs routine mathematical tasks, the core processor is freed up from this 
computation and its time is saved. By taking specialized processing tasks from 
core CPU, coprocessor reduces the strain on the main microprocessor, so that it 
can run at a greater speed. 

• A coprocessor can perform special tasks like complex mathematical calculations 
or graphical display processing. They perform such jobs faster than core CPU. As 
a result, overall computer speed of the system increases. 

• To an ARM processor, we can attach the coprocessors. A coprocessor when 
added, we need to   expand instruction set of Core CPU or add configurable 
registers, to increase the processing power. The coprocessor interface permits a 
couple of coprocessors to be connected to the ARM CPU. 

https://www.geeksforgeeks.org/arm-processor-and-its-features/
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ARM Instructions: 
All ARM instructions are 32 bits long. Different ARM revisions have various 
instruction sets. These instruction sets express capabilities of ARM processor. Every 
ARM instruction follows this format: 
      PRE <preconditions> 
         INSTRUCTION(s) 
      POST<postconditions> 
There are no direct memory access instructions. In case of registers, usually 
destination first is applied.  
 

 
Data Processing Instructions: 
Chart of data processing instructions is: 

 
Data processing instructions operate on Registers. If suffix S is added, flags in cpsr 
is updated. MOV and Logical instructions update C, N and Z flags 
 
MOV Instruction 
   It is the simplest ARM instruction used to set initial values and transfer data 
between registers. 
Syntax:  
    instruction{cond}{S} Rd, N 
 
In this syntax, condition and S are optional. Rd is the destination register and N can 
be register or immediate value with/without barrel shifter.  
In addition to MOV instruction, there also exists MVN which negates the data in the 
register and moves to another register. 
 
MOV example: 

 



 
 
 

Role of Barrel Shifter: 
Barrel shifters are used to preprocess the data in the register before movement. As 
shown in the figure, data in the register can be given to barrel shifter and then sent 
to ALU. Unique and powerful feature of ARM to shift data left or right by specified 
positions before used in instructions. However, instructions MUL, CLZ, and QADD 
does not use barrel shifter.  
 
 

 
 

MOV example with Barrel shifter: 
 
 
 
 
 
 
 

 
 



 
Various Barrel Shifter operations: 

 
Hence in right shifting, either LSR or ASR can be used. LSR is used when sign 
extension is not required. However, ASR extends sign bit after shifting, Further it is 
noteworthy that LSL is equivalent to multiply by 2 and LSR is equivalent to divide 
by 2.  Rotation will preserve the shifted data from right to left.  
 

Working of RRX: 
RRX instruction shifts one bit right and hence lsb (b0) will be rotated to msb if carry 
flag is on and not if carry flag is off. 
 

 
 
Eg: 
 
 
 

 
 



Impact of Barrel Shifter on Condition flags: 
It can be observed that carry flag is affected when left shifting is done.  Condition 
flags are only updated when MOV instruction contains suffix S. 

 
 

Variants of barrel shift: 
Shifting amount can be an immediate value or given through a register.  

 
Barrel shifter with cpsr example: 

 

 



 
 
 

Arithmetic Instructions: 
Arithmetic Instructions are used to perform arithmetic operations like addition and 
subtraction.  
Syntax: 
Syntax: instruction{<cond>}{S} Rd, Rn, N 
 
Condition can be specified on addition and suffix S can be given for updation of 
cpsr. Computation of arithmetic instruction is: 
 
Rd=Rn operator N 
where N can be immediate value, register or scaled value. 
 
Following are the various arithmetic instructions: 

 
 
Eg: 
(i) 

 

 

 
Tracing: 
   r0=r1-r2=2-1=1 
 
(ii) 



 

 

 
Tracing: 
 r0=0-r1=0-0x00000077 = 0xffffff89 (hexadecimal subtraction) 
 
(iii) 

 

 

 
 
Tracing: 
 r1=r1-1=1-1=0  (Zero and carry flag is affected) 
 
(iv) 

 

 

 
 
Tracing: 
r0=r1+r1<<1=5+(5<<1)=5+10=15=0xf 
 

Logical Instructions: 
ARM logical operations include AND, ORR (OR), EOR (XOR), and BIC (bit clear). 
These each operate bitwise on two sources and write the result to a destination 
register. The first source is always a register and the second source is either an 
immediate or another register. 
 
Syntax: instruction{<cond>}{S} Rd, Rn, N 
 
Following is the list of Logical Instructions: 



 
 
Eg: 
(i)  

 

 

 
 
Tracing: r0=r1 | r2= 0x02040608 | 0x10305070 =0x12345678 (as anything OR with 
0=anything) 
 
(ii) 

 

 
 

 
 
Tracing: r0=r1 & ~r2= 1111 & ~(0101)= 1111 & 1010 = 1010 
 
 

Comparison Instructions: 
These instructions are used to compare the contents of registers. They affect the 
condition flags in the CPSR. 
Syntax: 
instruction{<cond>}{S} Rn, N 
 
Following are the various comparison instructions: 



 
 
 
Eg: 
(i) 

 

 

 
 

Multiplication Instructions: 
These instructions are intended to find the product of registers. Multiplication can be 
augmented with addition of accumulator. Further, there are signed and unsigned 
multiplication instructions exclusively. Multiplication of 32 bit numbers can result in 
64bit product and such product is stored in low and high registers. 
 
Syntax: 

MLA{<cond>}{S} Rd, Rm,Rs, Rn 
               MUL {<cond>}{S} Rd, Rm, Rs 
 

 
 
Syntax for signed and long multiplication: 
instruction{<cond>}{S} RdLo, ,RdHi, Rm, Rs 
 

 
 



Eg: 
(i)  

 

 

 
 
Tracing: r0=r1*r2=2*2=4 
 
(ii) 

 
 

 

 
Tracing: 
           [r0,r1]=r2*r3=0xf0000002 * 0x00000002  
                                 =0b 1111 000000 0010 << 000000001 
                                  r0=0b1110 000000 0100 =0xe0000004 
                                 r1=shifted contents=1 
 

Branch Instructions: 
Branch Instructions are used in ARM to branch to labels and this alters the sequential 
execution of the programs. Branches can be unconditional or conditional (based on 
the value of conditional flags in CPSR). Further, one can branch to the instructions 
ahead (forward branch) or instructions before (backward branch). 
 
Syntax: instruction{<cond>}  label | Rm 
 



 
 
Eg: 
(i) Forward branch: 

 
(ii) Backward branch: 

 
             
(iii) Branch to subroutines 

 
 
 

Load and Store instructions: 
There are no direct memory access instructions in ARM. The contents have to be 
transferred to and from the memory with the register. Load instruction loads the data 
from memory to register. Store instruction writes the data from register to the 

memory. 



 
 
Categories of Load and Store Instructions: 
 

 
 

Single Register Transfer: 
 
Single Register load can be LDRB (Load byte), LDRSB (Load Signed Byte), LDRH 
(Load half word-16 bits), LDR (Load word – 32 bits) 
 
Single Register store can be STRB (Store byte), STRSB (Store Signed Byte), STRH (Store 
half word-16 bits), STR (Store word – 32 bits) 
 

Single Register Load-Store Addressing Modes: 
These modes help to compute the address of the memory for loading and storing. 

 
 
Eg: 
(i) Preindex with write back: 



 

 

 
(ii) Preindex only 
 

 

 

 
 
(iii) Post index 

 

 

 
Offset class of Single Register Load-Store addressing modes: 
The offset can be: 
(i) Signed or Unsigned 
(ii) Offset address can be given through another register – Register based 
(iii) Offset can be an immediate value of max 12 bits 
(iv) Offset address can be scaled with barrel shift register operations 
 

Load-Store Multiple Register transfer: 

 



Eg: 
(i)  

 

 

 
Tracing: 
 
Before LDMIA 

 
 
After LDMIA: (First load multiple and then increment) 

 
 
After LDMIB: (First increment and then load multiple) 

 
Similarly, LDMDB and LDMDA works by decrementing addresses and goes to the 
lower address of the memory. 
 
 



Block memory copy: 
  The load-store multiple instructions can help in performing copying one block of 
memory to another. An ALP for block memory copy is: 
loop: 
         LDMIA r9!, {r0-r7} 
         STMIA r10, {r0-r7} 
         CMP r9, r11 
         BNE loop 
The corresponding memory map can be depicted as: 

 
 
 

Stacks: 
Stacks are data structures and memory locations which can be operated in Last-In-
First-Out (LIFO) order. Stacks are supported with PUSH (writing to stack-Store-
STRM) and POP (reading from stack-Load-LDM) operations. Stacks are operated 
through stack pointers (sp). Stack Base is a pointer that points to the starting address 
of the stack. Stack pointer points to the top of the stack. Maximum size of the stack 
beyond which overflow occurs is called Stack limit.  

Stacks are called Full Stack if sp points to the last inserted location and are 
called Empty Stack if sp points the next available location. Stacks are called 
Descending stack if they grow from higher memory address to lower memory address 
and Ascending stack if they grow from lower memory address to higher memory 
address. Hence we have four combinations of Stacks: 



 
 
Addressing modes for Stack operations: 

 
 
Eg: 
(i) Descending Full Stacks 

 

 

  
 
(ii) Descending Empty Stacks 



 

 

  
 
 

SWP Instructions: 
SWP instruction is used to swap the contents of the memory and register. 

 
Eg: 

 

 

 
 
 

Software Interrupts 
They are the call to the operating system for specific tasks. Each task is identified by 
SWI number.  
Format:  
SWI{<cond>} SWI number 
 



Eg: 

 

 

 

 
 

Program Status Register Instructions 

 
MSR copies contents from general purpose registers to the status register.  MRS 
operates in the reverse direction. Further the specific fields to copied or saved in the 
status register can also be mentioned in the MRS and MSR instructions. The MRS and 
MSR instructions also change processor mode from user to OS as they need elevated 
privileges.  
 

 
Eg: 

 

 

 
 

Overview of C compilers and optimization: 
 
 There exists tradeoff in Optimizing code takes and code readability. Hence one 
needs to optimize the functions that are frequently executed. Further, optimize the 
functions that are important. It is necessary to document non-obvious optimizations. 
C compilers need to be efficient yet conservative of ARM processor architecture.  
 
 



Eg: 
void memclr(char *data, int N) 
{ 
     for(;N>0;N--) 
    { 
         *data=0; 
          data++; 
     } 
} 
 
This program clears N bytes of data. However, compiler does not know: 

(i) whether N=0, as if N=0, condition checking in loop can be avoided. 
(ii) Data array pointer is 4 byte aligned, otherwise masking would be required 

(iii) N is a multiple of 4 so that aligned addressing is possible 
 

 
 

Load and Store Instructions based on ARM versions: 
 

 
 
Hence prior to ARMV4, only byte and word loading/storing was supported. In 
ARMV4, signed and unsigned byte and half words load-store was added. ARMV5 
also supports double word (64 bit) load-stores.  
 



 
 
It is recommended to use int and long (32 bit words) in the C program as they are 
friendly to ARM architecture which has 32 bit registers and uses 32 bit memory. 
 
Eg: 
Consider a C program that computes checksum. Checksum is the sum of 64 data 
elements. 
int checksum_v1(int *data) 
{ 
     char i; 
     int sum=0; 
     for(i=0;i<64;i++) 
    { 
         sum+=data[i]; 
     } 
    return sum; 
} 
 
Assume program name is csum.c, then 
Command 
armcc  -Otime -c -o csum.o csum.c  
will generate object code csum.o which can be executed in ARM devices. 
Command 
fromelf --text -c csum.o > csum.txt 
will generate a text file that contains ALP  of the corresponding C program. 
 
Hence, resulting ALP is: 
checksum_v1 
 
MOV r2,r0; r2->data 
MOV r0,#0; r0->sum 
MOV r1, #0; r1->i 
checksum_v1_loop 
   ;r3=data[i] 
   LDR r3,[r2, r1, LSL #2] 
   ADD r1,r1,#1 ; i++ 
   AND r1, r1,#0xff 



    ; i=(char) casting 
   CMP r1, #0x40; i<64 
   ADD r0,r3,r0; sum+=data[i] 
   BCC checksum_v1_loop 
   MOV pc, r14 ;return sum 
 
Thus an AND instruction is added to make sure char data type boundary is not 
violated. However AND is costlier and can be avoided by changing data type to 
unsigned int.  
 
int checksum_v2(int *data) 
{ 
     unsigned int i; 
     int sum=0; 
     for(i=0;i<64;i++) 
    { 
         sum+=data[i]; 
     } 
    return sum; 
} 
 
and its converted ALP: 
checksum_v2 
MOV r2,r0; r2->data 
MOV r0,#0; r0->sum 
MOV r1, #0; r1->i 
checksum_v2_loop 
   ;r3=data[i] 
   LDR r3,[r2, r1, LSL #2] 
   ADD r1,r1,#1 ; i++ 
   CMP r1, #0x40; i<64 
   ADD r0,r3,r0; sum+=data[i] 
   BCC checksum_v1_loop 
   MOV pc, r14 ;return sum 
 

Short checksum computation: 
   Short checksum is a checksum of 64 elements of 16-bit data instead of 32 bit.  
Corresponding C program is: 
 
short checksum_v3(short *data) 
{ 
     unsigned int i; 
     short sum=0; 
     for(i=0;i<64;i++) 
    { 
         sum=(short)(sum+data[i]); 



     } 
    return sum; 
} 
 
In this program, casting to short is required as sum is 32 bit and data element is 16 bit. 
Since loop iterates 64 times, 64 times casting would be done which will be costlier. 
This can also be emphasized with the following converted ALP: 
 
checksum_v3 
MOV r2,r0; r2->data 
MOV r0,#0; r0->sum 
MOV r1, #0; r1->i 
checksum_v3_loop 
   ADD r3,r2, r1, LSL #1;r3=&data[i] 
   LDRH r3, [r3,#0];r3=data[i] 
   ADD r1,r1,#1 ; i++ 
   CMP r1, #0x40; i<64 
   ADD r0,r3,r0; sum+=data[i] 
   MOV r0,r0, LSL #16 
   MOV r0, r0, ASR #16 
   BCC checksum_v1_loop 
   MOV pc, r14 ;return sum 
 
It can be observed that in then ALP, first address of loading is computed and the 
loading is done with LDRH. Separate steps are necessary as LDRH does not support 
barrel shifting. Further in each iteration of the loop, casting of sum is done by left 
shifting lower half word to upper half word and then right shifting upper half word 
to lower half word with sign extension.  
 
This casting and shifting which is costlier can be avoided by processing data as a 
pointer rather than an array. The next version of checksum illustrates this: 
 
short checksum_v4(short *data) 
{ 
     unsigned int i; 
     int sum=0; 
     for(i=0;i<64;i++) 
    { 
         sum+=*(data++); 
     } 
    return (short)sum; 
} 
 
Consider the generated ALP: 
checksum_v4 
MOV r2,#0; r2->sum 



MOV r1, #0; r1->i 
checksum_v4_loop 
   LDRSH r3, [r0],#2;r3=*(data++) 
   ADD r1,r1,#1 ; i++ 
   CMP r1, #0x40; i<64 
   ADD r2,r3,r2; sum+=r3 
   BCC checksum_v4_loop 
   MOV r0,r2, LSL #16 
   MOV r0, r0, ASR #16 
   MOV pc, r14 ;return sum 
 
Hence two improvements can be pointed out. Separate steps of address computation 
and loading is combined as single load with post index. Further casting is done only 
on return value and not in each iteration. Thus, only once left and right barrel shifters 
are used.  
 
 

Functions: 
   Functions are written in C for modularization of the code. A function is written once 
and called many times. Every function has a name, return type and arguments. 
Function return values of the appropriate type. Function definition is known as callee 
statement and function invocation is known as caller.  
Eg: 

 
  
Function arguments are said to be passed wide if they are not reduced to range of 
type. Else they are narrow. Following rules prevail with respect to widening and 
narrowing: 
(i) If compiler passes wide, callee should reduce 
(ii) If compiler passes narrow, caller should reduce 
(iii) If compiler returns wide, caller should reduce 
(iv)If compiler returns narrow, callee should reduce 
 
Eg: Consider the following C snippet: 
short add_v1(short a, short b) 
{ 



   return a+(b>>1); 
} 
 
The corresponding ALP is: 
add_v1 
ADD r0,r0,r1,ASR #1 
MOV r0,r0, LSL #16 
MOV r0, r0, ASR #16 
MOV pc, r14 ;return sum  
 
It has shifting code (LSL and ASR) because of type casting issues.  
 

Signed and unsigned numbers: 
  Signed numbers have an exclusive sign bit as the most significant bit. The value of 1 
in the sign bit indicates it is a negative number else it is a positive number. Unsigned 
numbers are always positive and no special bit is required. 
 
For addition, subtraction and multiplication no difference in signed or unsigned. For 
division unsigned is better. Consider the following C example: 
 
int average_v1(int a, int b) 
{ 
   return (a+b)/2; 
} 
 
Here division by 2 can be implemented with ASR. However for negative numbers 1 
should be added before division. Thus following ternary condition illustrates the 
division complexity of signed numbers: 

 
 
Hence generated ALP of signed numbers average is as follows: 
 
average_v1 
ADD r0,r0,r1 
ADD r0,r0,r0, LSR #31 
MOV r0, r0, ASR #1 
MOV pc, r14 
 
Thus we bring sign bit to lsb by performing LSR 31 times and add it to the number 
before performing division. If unsigned number was used, no such shifting was 
required.  
 

Loops: 
Loops are mechanism deployed in C to repeat certain sequence of statements. 



Multiple looping mechanisms like for, do-while and while exist. However, efficient 
way of coding loops in C is required such that it will be suitable for ARM architecture. 
Two cases shall be considered: 

(i) Loops with fixed number of iterations 
(ii) Loops with variable number of iterations 

 
(i)Loops with fixed number of iterations: 
Consider the following C code to compute checksum that use a loop with upcounter: 
 
int checksum_v5(int *data) 
{ 
     unsigned int i; 
     int sum=0; 
     for(i=0;i<64;i++) 
    { 
         sum+=*(data++); 
     } 
    return sum; 
} 
 
The generated ALP has 3 instructions required for looping: ADD, CMP and BCC: 
checksum_v5 
MOV r2,r0; r2->data 
MOV r0,#0; r0->sum 
MOV r1, #0; r1->i 
checksum_v5_loop 
   LDR r3,[r2],#4 
   ADD r1,r1,#1 ; i++ 
   CMP r1, #0x40; i<64 
   ADD r0,r3,r0; sum+=data[i] 
   BCC checksum_v5_loop 
   MOV pc, r14 ;return sum  
 
 
We can reduce this to instructions if downcounter is used as shown in the following 
C code: 
 
int checksum_v6(int *data) 
{ 
     unsigned int i; 
     int sum=0; 
     for(i=64;i!=0;i--) 
    { 
         sum+=*(data++); 
     } 
    return sum; 
} 



 
The generated ALP has only 2 instructions for looping: SUBS and BNE. Further it is 
always better to use post indexing technique while operating with arrays which helps 
to operate array like pointer and avoid explicit index variable. 
  
checksum_v6 
MOV r2,r0; r2->data 
MOV r0,#0; r0->sum 
MOV r1, #0x40;r1->i 
checksum_v6_loop 
   LDR r3,[r2],#4 
   SUBS r1,r1,#1 ; i-- 
   ADD r0,r3,r0; sum+=data[i] 
   BNE checksum_v6_loop 
   MOV pc, r14 ;return sum 
 
(ii)Loops with variable number of iterations: 
Consider another checksum example where only first N elements are added and 
thus induces variable number of iterations. (N can be varied) 
int checksum_v7(int *data, unsigned int N) 
{ 
     int sum=0; 
     for(;N!=0;N--) 
    { 
         sum+=*(data++); 
     } 
    return sum; 
} 
However in the generated ALP there is an unnecessary condition checking of N: 
checksum_v7 
MOV r2,#0; r2->data 
CMP r1,#0; r0->sum 
BEQ checksum_v7_end 
checksum_v7_loop 
   LDR r3,[r0],#4 
   SUBS r1,r1,#1 ; i-- 
   ADD r2,r3,r2; sum+=data[i] 
   BNE checksum_v7_loop 
Checksum_v7_end    
    MOV r0,r2  
    MOV pc,r14  
 
This unnecessary condition checking can be avoided if do-while is used instead of for 
loop: 
int checksum_v8(int *data, unsigned int N) 
{ 
     int sum=0; 



     do 
    { 
         sum+=*(data++); 
     }while(--N!=0); 
    return sum; 
} 
 
and in the resulting ALP the prechecking code is avoided: 
checksum_v8 
MOV r2,#0; r2->data 
checksum_v8_loop 
   LDR r3,[r0],#4 
   SUBS r1,r1,#1 ; i-- 
   ADD r2,r3,r2; sum+=data[i] 
   BNE checksum_v8_loop 
   MOV r0,r2  
   MOV pc,r14 
 

Loop Unrolling: 
   Every loop incurs an overhead. Considering the previous example, even with down 
counter loop, every loop iteration uses 2 instructions: SUBS and BNE . SUBS requires 
1 instruction cycle and BNE requires 3 instruction cycle. Hence each iteration has an 
overhead of 4 instruction cycle. Hence for loop with N iterations, there shall be 4N 
cycles overhead. This can be reduced if same loop statement is written multiple times 
and step decrement is reduced by the times it is unrolled.  
Eg: 
int checksum_v9(int *data, unsigned int N) 
{ 
  int sum=0; 
  do 
  { 
    sum+=*(data++); 
sum+=*(data++); 
sum+=*(data++); 
sum+=*(data++); 
N-=4; 
   }while(N!=0); 
    return sum; 
} 
 
Hence in this example, loop has been unrolled 4 times by writing same loop statement 
4 times and consequently N is reduced by 4 each time than one. Now, each loop 
iteration requires 4 cycles (SUBS-1, BNE-3) and we will have N/4 iterations. Hence 
loop overhead is reduced to 4*N/4 = N. Thus, we can reduce loop overhead 4 times.  
 
 



Register Allocation: 
 If more variables exist than available registers, some variables are stored in 
process stack and are called Spilled variables. For efficient implementation it is 
advised to  minimize the number of spilled variables. Compilers chose most important 
and frequently accessed variables are stored in registers. Programmers are advised to 
limit loop variables to 12 (even though in theory 14 registers are possible). Compiler 
decides spilling of variables on the basis of frequency of use. C has register keyword 
which hints the compiler to use register to store the variable than stack. However it is 
compiler dependent decision on whether it will store or not.  

 

Function calls: 
❑ APCS – ARM Procedure Call Standard – A standard for arguments and return 

values 
❑ In case of Thumb registers, APCS is redefined as ATPCS – ARM Thumb 

Procedure Call Standard 
❑ As per APCS, 4 function arguments can be stored in registers and rest of the 

arguments find place in the stack. Hence for C functions having more than 4 
arguments Stack will be accessed by caller and callee 

❑ To optimize, use structures in C which can pack arguments and make sure that 
only registers are used.  

 

 
 

Consider the following example that demonstrates the use of creating structures of 
function arguments: 
 
char *queue_bytes_v1(char *Qstart, char *Qend, char *Qptr, char *data, unsigned int 
N) 
{ 
     do{ 
         *(Qptr++)=*(data++); 
         if(Qptr==Qend) 
             Qptr=Qstart; 
       }while(--N); 



   return Qptr; 
} 
 
In this C program data is transferred from location data to a destination queue which 
is managed by start pointer Qstart, end pointer Qend and current pointer Qptr. The 
transfer is limited by the value of N. The queue is modelled as a circular queue in 
which insertion starts from beginning, when end is reached.  
 
However the C program written requires 5 arguments and hence will need the use of 
stack. However this can be avoided if queue pointers are packed inside the following 
structure and structure is sent in the function argument: 
typedef struct 
{ 
    char *qptr; 
    char *qstart; 
    char *qend; 
}Queue; 
 
 
char *queue_bytes_v2(Queue q, char *data, unsigned int N) 
{ 
     char *Qptr=q->qptr; 
     char *Qend=q->qend; 
     char *Qstart=q->qstart; 
     do{ 
         *(Qptr++)=*(data++); 
         if(Qptr==Qend) 
             Qptr=Qstart; 
       }while(--N); 
   return Qptr; 
} 
 
 
Further function optimizations possible are: 

 Write before functions before calling them. This allows compiler to make them 
inline 

 Critical functions can be coded as __inline keyword 
 

Pointer Aliasing: 
 2 pointers are said to be alias, if they point to same address. Changing one 
affects another. The problem of pointer aliasing in C is that compiler uses a pessimistic 
attitude towards them. Compiler thinks all pointers are aliased and results in repeated 
loading of same memory locations in resulting ALP.  

Eg:Consider the following C code that uses pointers as function arguments: 
void timers_v1(int *timer1, int *timer2, int *step) 
{ 



   *timer1+=*step; 
   *timer2+=*step; 
} 
 
In this compiler treats timer1 and step as aliases. Hence it assumes timer1 will 
update step and hence step will be reloaded.  To avoid reloading, step is used 
as a local variable. Consider the example in which step is used as a local 
variable and hence will not be reloaded. 
 
void timers_v1(int *timer1, int *timer2) 
{ 
     int step=4; 
   *timer1+=step; 
   *timer2+=step; 
} 
 
Consider another example in which pointer aliasing can occur: 
int checksum_next_packet() 
{ 
     int *data; 
     unsigned int i; 
     int N, sum=0; 
      data=get_next_packet(&N); 
     for(i=0;i<N;i++) 
    { 
         sum+=*(data++); 
     } 
    return sum; 
} 
 

Here, compiler assumes the pointers data and &N as aliases and reloads N again 
and again. Hence it is recommended to never send address of local variables and 
instead make a copy and send. 

 
 
 
 

 


