

DEPT. OF AIML , JNNCE 1

MACHINE LEARNING STUDY MATERIAL,

MODULE I:

Definitions of Machine Learning
 Machine Learning is the science (and art) of programming computers so they

can learn from data.
 Machine Learning is the field of study that gives computers the ability to learn

without being explicitly programmed.
 A computer program is said to learn from experience E with respect to some task

T and some performance measure P, if its performance on T, as measured by P,
improves with experience E.

Need to use Machine Learning

Machine Learning is great for:

 Problems for which existing solutions require a lot of hand-tuning or long lists of
rules: one Machine Learning algorithm can often simplify code and perform better.

Eg: writing traditional programming vs machine learning approach for a spam filter:

Traditional programming for spam filter detection

DEPT. OF AIML , JNNCE 2

MACHINE LEARNING STUDY MATERIAL,

Machine Learning approach for spam filter detection

In traditional programming, one writes a detection algorithm for each of the patterns that
you noticed, and the program would flag emails as spam if a number of these patterns are
detected. Since the problem is not trivial, your program will likely become a long list of
complex rules—pretty hard to maintain. In contrast, a spam filter based on Machine
Learning techniques automatically learns which words and phrases are good predictors
of spam by detecting unusually frequent patterns of words in the spam examples
compared to the ham examples. The program is much shorter, easier to maintain, and
most likely more accurate.

 Complex problems for which there is no good solution at all using a traditional
approach: the best Machine Learning techniques can find a solution.

 Machine Learning shines is for problems that either are too complex for traditional
approaches or have no known algorithm. For example, consider speech recognition:
say you want to start simple and write a program capable of distinguishing the words
“one” and “two.” You might notice that the word “two” starts with a high-pitch sound
(“T”), so you could hardcode an algorithm that measures high-pitch sound intensity
and use that to distinguish ones and twos. Obviously this technique will not scale to
thousands of words spoken by millions of very different people in noisy environments
and in dozens of languages. The best solution (at least today) is to write an algorithm
that learns by itself, given many example recordings for each word.

 Fluctuating environments: a Machine Learning system can adapt to new data.

Eg: In the spam filter detection example, if spammers notice that all their emails
containing “4U” are blocked, they might start writing “For U” instead. A spam filter
using traditional programming techniques would need to be updated to flag “For U”
emails. If spammers keep working around your spam filter, you will need to keep
writing new rules forever. In contrast, a spam filter based on Machine Learning
techniques automatically notices that “For U” has become unusually frequent in spam
flagged by users, and it starts flagging them without your intervention.

DEPT. OF AIML , JNNCE 3

MACHINE LEARNING STUDY MATERIAL,

Machine Learning solutions adapt to change

 Getting insights about complex problems and large amounts of data.

ML algorithms can be inspected to see what they have learned (although for some
algorithms this can be tricky). For instance, once the spam filter has been trained on
enough spam, it can easily be inspected to reveal the list of words and combinations
of words that it believes are the best predictors of spam. Sometimes this will reveal
unsuspected correlations or new trends, and thereby lead to a better understanding
of the problem. Applying ML techniques to dig into large amounts of data can help
discover patterns that were not immediately apparent. This is called data mining.

Machine Learning can help humans learn

Types of Machine Learning Systems
There are so many different types of Machine Learning systems that it is useful to classify
them in broad categories based on:

 Whether or not they are trained with human supervision
 Whether or not they can learn incrementally on the fly
 Whether they work by simply comparing new data points to known data points,

or instead detect patterns in the training data.
Classification chart of Machine Learning

DEPT. OF AIML , JNNCE 4

MACHINE LEARNING STUDY MATERIAL,

Supervised/Unsupervised Learning
Machine Learning systems can be classified according to the amount and type of
supervision they get during training. There are four major categories: supervised
learning, unsupervised learning, semisupervised learning, and Reinforcement Learning

In supervised learning, the training data you feed to the algorithm includes the desired
solutions, called labels. A typical supervised learning task is classification. The spam
filter is a good example of this: it is trained with many example emails along with
their class (spam or ham), and it must learn how to classify new emails.
Another typical task is to predict a target numeric value, such as the price of a car, given
a set of features (mileage, age, brand, etc.) called predictors. This sort of task
is called regression.
Eg:

Classification of ham or spam email

DEPT. OF AIML , JNNCE 5

MACHINE LEARNING STUDY MATERIAL,

Predicting new hose value-Regression

Unsupervised learning
In unsupervised learning, the training data is unlabeled. The system tries to learn without
a supervisor. For example, say you have a lot of data about your blog’s visitors. You may
want to run a clustering algorithm to try to detect groups of similar visitors. At no point
do you tell the algorithm which group a visitor belongs to: it finds those connections
without your help. For example, it might notice that 40% of your visitors are males who
love comic books and generally read your blog in the evening, while 20% are young sci-fi
lovers who visit during the weekends, and so on. If you use a hierarchical
clustering algorithm, it may also subdivide each group into smaller groups. This may help
you target your posts for each group.
Eg:

Clustering of visitors of a blog

Usecases/Applications of unsupervised learning
There are different use cases of unsupervised learning:
(i) Visualization

DEPT. OF AIML , JNNCE 6

MACHINE LEARNING STUDY MATERIAL,

 Visualization algorithms are also good examples of unsupervised learning algorithms:
you feed them a lot of complex and unlabeled data, and they output a 2D or 3D
representation of your data that can easily be plotted.
Eg: Visualization of various objects performing semantic clustering

(ii)Dimensionality Reduction
❖ The number of input features, variables, or columns present in a given dataset is

known as dimensionality,
❖ and the process to reduce these features is called dimensionality reduction

(Feature extraction).
❖ A dataset contains a huge number of input features in various cases, which makes

the predictive modeling task more complicated.
❖ Because it is very difficult to visualize or make predictions for the training dataset

with a high number of features, for such cases, dimensionality reduction
techniques are required to use.
Eg:

DEPT. OF AIML , JNNCE 7

MACHINE LEARNING STUDY MATERIAL,

(iii) Anomaly detection
 Anomaly detection detects unusual credit card transactions to prevent fraud,
catching manufacturing defects, or automatically removing outliers from a dataset
before feeding it to another learning algorithm. The system is trained with normal
instances, and when it sees a new instance it can tell whether it looks like a normal
one or whether it is likely an anomaly.
Eg:

(iv) Association rule mining
Association rule learning is a type of unsupervised learning technique that checks
for the dependency of one data item on another data item and maps accordingly
so that it can be more profitable. It tries to find some interesting relations or
associations among the variables of dataset. It is based on different rules to
discover the interesting relations between variables in the database..

For example, if a customer buys bread, he most likely can also buy butter, eggs, or milk,
so these products are stored within a shelf or mostly nearby. Consider the below diagram:

DEPT. OF AIML , JNNCE 8

MACHINE LEARNING STUDY MATERIAL,

Semi-supervised learning
Some algorithms can deal with partially labeled training data, usually a lot of unlabeled
data and a little bit of labeled data. This is called semisupervised learning. Some photo-
hosting services, such as Google Photos, are good examples of this. Once you upload all
your family photos to the service, it automatically recognizes that the same person A
shows up in photos 1, 5, and 11, while another person B shows up in photos 2, 5, and 7.
This is the unsupervised part of the algorithm (clustering). Perform one label per
person and it is able to name everyone in every photo, which is useful for searching photo.
Most semisupervised learning algorithms are combinations of unsupervised and
supervised algorithms.
Eg:

Self supervised learning
Self-supervised learning is a deep learning methodology where a model is pre-trained
using unlabelled data and the data labels are generated automatically, which are further
used in subsequent iterations as ground truths. The fundamental idea for self-
supervised learning is to create supervisory signals by making sense of the unlabeled
data provided to it in an unsupervised fashion on the first iteration. Then, the model
uses the high-confidence data labels among those generated to train the model in
subsequent iterations.

https://www.geeksforgeeks.org/introduction-deep-learning/

DEPT. OF AIML , JNNCE 9

MACHINE LEARNING STUDY MATERIAL,

For example, a self-supervised learning model might be trained to predict the location
of an object in an image given the surrounding pixels to classify a video as depicting a
particular action.

Reinforcement Learning
Reinforcement Learning system uses an agent in this context which can observe the
environment, select and perform actions, and get rewards in return (or penalties in the
form of negative rewards). It must then learn by itself what is the best strategy, called
a policy, to get the most reward over time. A policy defines what action the agent should
choose when it is in a given situation.
Eg:

Batch and Online Learning

DEPT. OF AIML , JNNCE 10

MACHINE LEARNING STUDY MATERIAL,

In batch learning, the system is incapable of learning incrementally: it must be trained
using all the available data. First the system is trained, and then it is launched into
production and runs without learning anymore; it just applies what it has learned. This
is called offline learning.

Drawbacks:
Handling large amounts of data: Batch learning requires loading the entire dataset into
memory for training. This becomes a challenge when dealing with large datasets that
exceed the available memory capacity.
Hardware limitations: Batch learning can be computationally expensive, especially when
dealing with complex models or large datasets. Training a model on a single machine may
take a significant amount of time and may require high-performance hardware, such as
GPUs or specialized processing units.
Availability constraints: In some scenarios, obtaining the entire dataset required for batch
learning may not be feasible or practical.

online learning
In the online learning, data is fed to the model in small batches, sequentially. These batches
are called mini batches. After, each batch of training, your model gets better. since these
batches are small chunks of data. so you can perform this training on server (in
production) That’s why it is called online learning means your model is getting trained
when your model is on server.

DEPT. OF AIML , JNNCE 11

MACHINE LEARNING STUDY MATERIAL,

Eg: Online learning system

Online learning is great for systems that receive data as a continuous flow (e.g., stock
prices) and need to adapt to change rapidly or autonomously. It is also a good option if
you have limited computing resources: once an online learning system has learned about
new data instances, it does not need them anymore, so you can discard them.
Using online learning to handle huge datasets

One important parameter of online learning systems is how fast they should adapt to
changing data: this is called the learning rate. If you set a high learning rate, then your
system will rapidly adapt to new data, but it will also tend to quickly forget the old data.
Conversely, if you set a low learning rate, the system will have more inertia; that is, it will
learn more slowly, but it will also be less sensitive to noise in the new data or to sequences
of nonrepresentative data points. A big challenge with online learning is that if bad data
is fed to the system, the system’s performance will gradually decline.

Instance-Based Versus Model-Based Learning

DEPT. OF AIML , JNNCE 12

MACHINE LEARNING STUDY MATERIAL,

One more way to categorize Machine Learning systems is by how they generalize. There
are two main approaches to generalization: instance-based learning and model-based
learning.
Model-Based Learning
Model-based learning involves creating a mathematical model that can predict outcomes
based on input data. The model is trained on a large dataset and then used to make
predictions on new data. The model can be thought of as a set of rules that the machine
uses to make predictions. In model-based learning, the training data is used to create a
model that can be generalized to new data. The model is typically created using statistical
algorithms such as linear regression, logistic regression, decision trees, and neural
networks. These algorithms use the training data to create a mathematical model that can
be used to predict outcomes.
Eg:

Advantages of Model-Based Learning

1. Faster predictions: Model-based learning is typically faster than instance-
based learning because the model is already created and can be used to make
predictions quickly.

2. More accurate predictions: Model-based learning can often make more
accurate predictions than instance-based learning because the model is
trained on a large dataset and can generalize to new data.

3. Better understanding of data Model-based learning allows you to gain a better
understanding of the relationships between input and output variables.

Disadvantages of Model-Based Learning
1. Requires a large dataset: model-based learning requires a large dataset to

train the model.
2. Requires expert knowledge: Model-based learning requires expert knowledge

of statistical algorithms and mathematical modeling.
3. Requires expert knowledge: Model-based learning requires expert knowledge

of statistical algorithms and mathematical modeling.

DEPT. OF AIML , JNNCE 13

MACHINE LEARNING STUDY MATERIAL,

Instance-Based Learning
Instance-based learning involves using the entire dataset to make predictions. The
machine learns by storing all instances of data and then using these instances to make
predictions on new data. The machine compares the new data to the instances it has seen
before and uses the closest match to make a prediction. In instance-based learning, no
model is created. Instead, the machine stores all of the training data and uses this data to
make predictions based on new data. Instance-based learning is often used in pattern
recognition, clustering, and anomaly detection.
Eg:

Advantages of Instance-Based Learning

1. No need for model creation: Instance-based learning doesn’t require creating
a model.

2. Can handle small datasets: Instance-based learning can handle small datasets
because it doesn’t require a large dataset to create a model.

3. More flexibility: Instance-based learning can be more flexible than model-
based learning because the machine stores all instances of data and can use
this data to make predictions.

Disadvantages of Instance-Based Learning
1. Slower predictions: Instance-based learning is typically slower than model-

based learning because the machine has to compare the new data to all
instances of data in order to make a prediction.

2. Less accurate predictions: Instance-based learning can often make less
accurate predictions than model-based learning because it doesn’t have a
mathematical model to generalize from.

3. Limited understanding of data: Instance-based learning doesn’t provide as
much insight into the relationships between input and output variables as
model-based learning does.

DEPT. OF AIML , JNNCE 14

MACHINE LEARNING STUDY MATERIAL,

Main Challenges of Machine Learning

Insufficient Quantity of Training Data
For a toddler to learn what an apple is, all it takes is for you to point to an apple and say
“apple” (possibly repeating this procedure a few times). Now the child is able to recognize
apples in all sorts of colors and shapes. Machine Learning is not quite there yet; it takes a
lot of data for most Machine Learning algorithms to work properly. Even for very simple
problems you typically need thousands of examples, and for complex problems such as
image or speech recognition you may need millions of examples (unless you can reuse
parts of an existing model.

Nonrepresentative Training Data
In order to generalize well, it is crucial that your training data be representative of the
new cases you want to generalize to. This is true whether you use instance-based learning
or model-based learning. It is crucial to use a training set that is representative of the
cases you want to generalize to. This is often harder than it sounds: if the sample is too
small, you will have sampling noise (i.e., nonrepresentative data as a result of chance),
but even very large samples can be nonrepresentative if the sampling method is flawed.
This is called sampling bias.
Eg: you want to build a system to recognize funk music videos. One way to build your
training set is to search “funk music” on YouTube and use the resulting videos. But this
assumes that YouTube’s search engine returns a set of videos that are representative of

DEPT. OF AIML , JNNCE 15

MACHINE LEARNING STUDY MATERIAL,

all the funk music videos on YouTube. In reality, the search results are likely to be biased
toward popular artists (and if you live in Brazil you will get a lot of “funk carioca” videos,
which sound nothing like James Brown)

Poor-Quality Data
If the training data is full of errors, outliers, and noise (e.g., due to poor-quality
measurements), it will make it harder for the system to detect the underlying patterns,
so your system is less likely to perform well. It is often well worth the effort to spend time
cleaning up your training data. The truth is, most data scientists spend a significant part
of their time doing just that.

Irrelevant Features
As the saying goes: garbage in, garbage out. Your system will only be capable of learning
if the training data contains enough relevant features and not too many irrelevant ones.
A critical part of the success of a Machine Learning project is coming up with a good set
of features to train on. This process, called feature engineering, involves:

• Feature selection: selecting the most useful features to train on among
existing features.
• Feature extraction: combining existing features to produce a more useful
one (as we saw earlier, dimensionality reduction algorithms can help).
• Creating new features by gathering new data.

overfitting:
it occurs when your model is too simple to learn the underlying structure of the data. For
example, a linear model of life satisfaction is prone to underfit; reality is just more
complex than the model, so its predictions are bound to be inaccurate, even on the
training examples.
The main options to fix this problem are:

• Selecting a more powerful model, with more parameters
• Feeding better features to the learning algorithm (feature engineering)
• Reducing the constraints on the model (e.g., reducing the regularization
hyperparameter)

Underfitting
A statistical model or a machine learning algorithm is said to have underfitting when a
model is too simple to capture data complexities. It represents the inability of the model
to learn the training data effectively result in poor performance both on the training
and testing data. In simple terms, an underfit model’s are inaccurate, especially when
applied to new, unseen examples. It mainly happens when we uses very simple model
with overly simplified assumptions. To address underfitting problem of the model, we
need to use more complex models, with enhanced feature representation, and less
regularization.

Graphs to differentiate overfitting, underfitting and appropriate-fitting

DEPT. OF AIML , JNNCE 16

MACHINE LEARNING STUDY MATERIAL,

Learning
Learning is the action or process of obtaining information or ability through studying,
practicing, being instructed, or experiencing something. Learning techniques can be split
into five categories:

1. Rote Learning (Memorizing): Memorizing things without understanding the
underlying principles or rationale.

2. Instructions (Passive Learning): Learning from a teacher or expert.
3. Analogy (Experience): We may learn new things by applying what we’ve learned

in the past.
4. Inductive Learning (Experience): Formulating a generalized notion based on prior

experience.
5. Deductive Learning: Getting new information from old information.

Concept Learning

DEPT. OF AIML , JNNCE 17

MACHINE LEARNING STUDY MATERIAL,

Concept learning, as a broader term, includes both case-based and instance-based
learning. At its core, concept learning involves the extraction of general rules or patterns
from specific instances to make predictions on new, unseen data. The ultimate goal is for
the machine to grasp abstract concepts and apply them in diverse contexts.
Concept learning in machine learning is not confined to a single pattern; it spans various
approaches, including rule-based learning, neural networks, decision trees, and more.
The choice of approach depends on the nature of the problem and the characteristics of
the data.
each concept can be thought of as a boolean-valued function defined over this larger set.
Example: using concept to classify birds:

Understanding the Concept:
The set of instances, represented by X, is the list of elements over which the notion is
defined. The target idea, represented by c, is the notion of action to be learned. It’s a
boolean-valued function that’s defined over X and may be expressed as:
c: X -> {0, 1}
So, when we have a subset of the training with certain attributes of the target concept c,
the learner’s issue is to estimate c from the training data.
The letter H stands for the collection of all conceivable hypotheses that a learner could
explore while determining the identification of the target idea.
A learner’s objective is to create a hypothesis h that can identify all of the objects in X in
such a way that:
h(x) = c(x) for all x in X

DEPT. OF AIML , JNNCE 18

MACHINE LEARNING STUDY MATERIAL,

In this sense, there are three things that an algorithm that enables concept learning must
have:
1. Details about the training (Past experiences to train our models)
2. Target Conception (Hypothesis to identify data objects)
3. Data objects themselves (For testing the models)

Hypothesis in Machine Learning (ML)
The hypothesis is one of the commonly used concepts of statistics in Machine Learning.
It is specifically used in Supervised Machine learning, where an ML model learns a
function that best maps the input to corresponding outputs with the help of an available
dataset.

In supervised learning techniques, the main aim is to determine the possible hypothesis
out of hypothesis space that best maps input to the corresponding or correct outputs.
There are some common methods given to find out the possible hypothesis from the
Hypothesis space, where hypothesis space is represented by uppercase-h (H) and
hypothesis by lowercase-h (h).

Hypothesis space (H):
Hypothesis space is defined as a set of all possible legal hypotheses; hence it is also known
as a hypothesis set. It is used by supervised machine learning algorithms to determine
the best possible hypothesis to describe the target function or best maps input to output.
Hypothesis (h):
It is defined as the approximate function that best describes the target in supervised
machine learning algorithms. It is primarily based on data as well as bias and restrictions
applied to data.

DEPT. OF AIML , JNNCE 19

MACHINE LEARNING STUDY MATERIAL,

Designing a Learning System in Machine Learning
Designing a learning system in machine learning requires careful consideration of several
key factors, including the type of data being used, the desired outcome, and the available
resources.

 The first step in designing a learning system in machine learning is to identify the
type of data that will be used. This can include structured data, such as numerical
and categorical data, as well as unstructured data, such as text and images. The
type of data will determine the type of machine learning algorithms that can be
used and the preprocessing steps required.

 Once the data has been identified, the next step is to determine the desired
outcome of the learning system. This can include classifying data, making
predictions, or identifying patterns in the data. The desired outcome will
determine the type of machine learning algorithm that should be used, as well as
the evaluation metrics that will be used to measure the performance of the
learning system.

 Next, the resources available for the learning system must be considered. This
includes the amount of data available, the computational power available, and the
amount of time available to train the model. These resources will determine the
complexity of the machine learning algorithm that can be used and the amount of
data that can be used for training.

 Once the data, desired outcome, and resources have been identified, it is time to
select a machine-learning algorithm and begin the training process. Decision trees,
SVMs, and neural networks are examples of common algorithms. It is crucial to
assess the effectiveness of the learning system using the right assessment
measures, such as recall, accuracy, and precision.

 After the learning system is trained, it is important to fine-tune the model by
adjusting the parameters and hyperparameters. This can be done using
techniques such as cross-validation and grid search. The final model should be
tested on a hold-out test set to evaluate its performance on unseen data.

checkers learning problem
For a checkers learning problem, the three elements will be,
1. Task T: To play checkers
2. Performance measure P: Total percent of the game won in the tournament.
3. Training experience E: A set of games played against itself

A Robot Driving Learning Problem:
For a robot to drive on a four-lane highway it needs a human-like understanding of all the
possibilities it might encounter. With the use of sight scanners and advanced machine
learning algorithms, it can be made possible.

T –> To drive on public four-lane highways using sight scanners.
P -> the average distance progressed before an error.
E -> the order of images and steering instructions noted down while observing a human
driver.

DEPT. OF AIML , JNNCE 20

MACHINE LEARNING STUDY MATERIAL,

Training experience
During the design of the checker's learning system, the type of training experience
available for a learning system will have a significant effect on the success or failure of the
learning.

1. Direct or Indirect training experience — In the case of direct training
experience, an individual board states and correct move for each board state
are given. In case of indirect training experience, the move sequences for a
game and the final result (win, loss or draw) are given for a number of games.

2. Supervised — The training experience will be labeled, which means, all the
board states will be labeled with the correct move. So the learning takes place
in the presence of a supervisor.
Unsupervised — The training experience will be unlabeled, which means, all
the board states will not have the moves. So the learner generates random
games and plays against itself with no supervision involvement.
Semi-supervised — Learner generates game states and asks the supervisor for
help in finding the correct move if the board state is confusing.

3. Is the training experience good —
Performance is best when training examples and test examples are from the
same/a similar distribution.

Choosing the Target Function
In this design step, we need to determine exactly what type of knowledge has to be learned
and it's used by the performance program. Here there are 2 considerations — direct and
indirect experience.
During the direct experience, the checkers learning system, it needs only to learn how to
choose the best move among some large search space. We need to find a target function
that will help us choose the best move among alternatives. Let us call this function
ChooseMove and use the notation ChooseMove : B →M to indicate that this function
accepts as input any board from the set of legal board states B and produces as output
some move from the set of legal moves M.
When there is an indirect experience, it becomes difficult to learn such function. How
about assigning a real score to the board state. So the function be V : B →R indicating that
this accepts as input any board from the set of legal board states B and produces an output
a real score. This function assigns the higher scores to better board states.

DEPT. OF AIML , JNNCE 21

MACHINE LEARNING STUDY MATERIAL,

Choosing a representation for the Target Function
Now its time to choose a representation that the learning program will use to describe the
function ^V that it will learn.
choose a simple representation for any given board state, the function ^V will be
calculated as a linear combination of the following board features:

• x1(b) — number of black pieces on board b
• x2(b) — number of red pieces on b
• x3(b) — number of black kings on b
• x4(b) — number of red kings on b
• x5(b) — number of red pieces threatened by black (i.e., which can be taken on

black’s next turn)
• x6(b) — number of black pieces threatened by red

^V = w0 + w1 · x1(b) + w2 · x2(b) + w3 · x3(b) + w4 · x4(b) +w5 · x5(b) + w6 · x6(b)
Final Design for Checkers Learning system

1. The performance System — Takes a new board as input and outputs a trace of
the game it played against itself.

2. The Critic — Takes the trace of a game as an input and outputs a set of training
examples of the target function.

3. The Generalizer — Takes training examples as input and outputs a hypothesis
that estimates the target function. Good generalization to new cases is crucial.

4. The Experiment Generator — Takes the current hypothesis (currently learned
function) as input and outputs a new problem (an initial board state) for the
performance system to explore.

DEPT. OF AIML , JNNCE 22

MACHINE LEARNING STUDY MATERIAL,

Final design of the checkers system
Perspectives and Issues in Machine Learning
Following are the list of issues in machine learning:
1. What algorithms exist for learning general target functions from specific training
examples? In what settings will particular algorithms converge to the desired function,
given sufficient training data? Which algorithms perform best for which types of
problems and representations?
2. How much training data is sufficient? What general bounds can be found to relate the
confidence in learned hypotheses to the amount of training experience and the character
of the learner’s hypothesis space?
3. When and how can prior knowledge held by the learner guide the process of
generalizing from examples? Can prior knowledge be helpful even when it is only
approximately correct?
4. What is the best strategy for choosing a useful next training experience, and how does
the choice of this strategy alter the complexity of the learning problem?
5. What is the best way to reduce the learning task to one or more function approximation
problems? Put another way, what specific functions should the system attempt to learn?
Can this process itself be automated?
5. How can the learner automatically alter its representation to improve its ability to
represent and learn the target function?

DEPT. OF AIML , JNNCE 23

MACHINE LEARNING STUDY MATERIAL,

Concept Learning in Machine Learning
Concept learning can be formulated as a problem of searching through a predefined space
of potential hypotheses for the hypothesis that best fits the training examples. Consider
the example task of learning the target concept “days on which person enjoys his favorite
water sport.” Below Table describes a set of example days, each represented by a set
of attributes. The attribute EnjoySport indicates whether or not a person enjoys his
favorite water sport on this day. The task is to learn to predict the value of EnjoySport for
an arbitrary day, based on the values of its other attributes.

Concept Learning Notations

Hypothesis representation for Machine Learning
In particular, let each hypothesis be a vector of six constraints, specifying the values of
the six attributes Sky, AirTemp, Humidity, Wind, Water, and Forecast.
For each attribute, the hypothesis will either

• indicate by a “?’ that any value is acceptable for this attribute,
• specify a single required value (e.g., Warm) for the attribute, or
• indicate by a “ø” that no value is acceptable.

If some instance x satisfies all the constraints of hypothesis h, then h classifies x as a
positive example (h(x) = 1).

DEPT. OF AIML , JNNCE 24

MACHINE LEARNING STUDY MATERIAL,

To illustrate, the hypothesis that a person enjoys his favorite sport only on cold days with
high humidity (independent of the values of the other attributes) is represented by the
expression
(?, Cold, High, ?, ?, ?)

Most General and Specific Hypothesis
The most general hypothesis-that every day is a positive example-is represented by
(?, ?, ?, ?, ?, ?)
and the most specific possible hypothesis-that no day is a positive example-is
represented by
(ø, ø, ø, ø, ø, ø)

Instance Space
Consider, for example, the instances X and hypotheses H in the EnjoySport learning task.
Given that the attribute Sky has three possible values, and that AirTemp, Humidity, Wind,
Water, and Forecast each have two possible values, the instance space X contains
exactly 3 . 2 . 2 . 2 . 2 . 2 = 96 distinct instances.
Example:
Let’s assume there are two features F1 and F2 with F1 has A and B as possibilities and F2
as X and Y as possibilities.
F1 – > A, B
F2 – > X, Y
Instance Space: (A, X), (A, Y), (B, X), (B, Y) – 4 Examples
Hypothesis Space: (A, X), (A, Y), (A, ø), (A, ?), (B, X), (B, Y), (B, ø), (B, ?), (ø, X), (ø, Y), (ø, ø),
(ø, ?), (?, X), (?, Y), (?, ø), (?, ?) – 16
Hypothesis Space: (A, X), (A, Y), (A, ?), (B, X), (B, Y), (B, ?), (?, X), (?, Y (?, ?) – 10

Hypothesis Space
Similarly there are 5 . 4 . 4 . 4 . 4 . 4 = 5120 syntactically distinct hypotheses within H.
Notice, however, that every hypothesis containing one or more “ø” symbols represents
the empty set of instances; that is, it classifies every instance as negative.
Therefore, the number of semantically distinct hypotheses is only 1 + (4 . 3 . 3 . 3 . 3 . 3) =
973.

DEPT. OF AIML , JNNCE 25

MACHINE LEARNING STUDY MATERIAL,

General-to-Specific Ordering of Hypotheses
To illustrate the general-to-specific ordering, consider the two hypotheses
h1 = (Sunny, ?, ?, Strong, ?, ?)
h2 = (Sunny, ?, ?, ?, ?, ?)
Now consider the sets of instances that are classified positive by hl and by h2. Because h2
imposes fewer constraints on the instance, it classifies more instances as positive.
In fact, any instance classified positive by h1 will also be classified positive by h2.
Therefore, we say that h2 is more general than h1.
For any instance x in X and hypothesis h in H, we say that x satisjies h if and only if h(x) =
1.
We define the more_general_than_or_equal_to relation in terms of the sets of instances
that satisfy the two hypotheses.

FIND-S algorithm
Find-S algorithm, is a machine learning algorithm that seeks to find a maximally specific
hypothesis based on labeled training data. It starts with the most specific hypothesis and
generalizes it by incorporating positive examples. It ignores negative examples during
the learning process. The algorithm's objective is to discover a hypothesis that accurately
represents the target concept by progressively expanding the hypothesis space until it
covers all positive instances.

Inner working of Find-S algorithm
The Find-S algorithm operates on a hypothesis space to find a general hypothesis that
accurately represents the target concept based on labeled training data. Let's delve into
the inner workings of the algorithm −

• Initialization − The algorithm starts with the most specific hypothesis, denoted as
h. This initial hypothesis is the most restrictive concept and typically assumes no
positive examples. It may be represented as h = <∅, ∅, ..., ∅>, where ∅ denotes
"don't care" or "unknown" values for each attribute.

• Iterative Process − The algorithm iterates through each training example and
refines the hypothesis based on whether the example is positive or negative.

 For each positive training example (an example labeled as the target class),
the algorithm updates the hypothesis by generalizing it to include the
attributes of the example. The hypothesis becomes more general as it
covers more positive examples.

DEPT. OF AIML , JNNCE 26

MACHINE LEARNING STUDY MATERIAL,

 For each negative training example (an example labeled as a non-target
class), the algorithm ignores it as the hypothesis should not cover negative
examples. The hypothesis remains unchanged for negative examples.

• Generalization − After processing all the training examples, the algorithm
produces a final hypothesis that covers all positive examples while excluding
negative examples. This final hypothesis represents the generalized concept that
the algorithm has learned from the training data.

During the iterative process, the algorithm may introduce "don't care" symbols or
placeholders (often denoted as "?") in the hypothesis for attributes that vary among
positive examples. This allows the algorithm to generalize the concept by accommodating
varying attribute values. The algorithm discovers patterns in the training data and
provides a reliable representation of the concept being learned.
Example:

Consider the data set:

Sky AirTemp Humidity Wind Water Forecast EnjoySport

Sunny Warm Normal Strong Warm Same Yes

Sunny Warm High Strong Warm Same Yes

Rainy Cold High Strong Warm Change No

Sunny Warm High Strong Cool Change Yes

Step1: Initialization
H=[<0,0,0,0,0>]
Step 2: Consider first sample, compare the samp le value and hypothesis values one by
one and make changes:
H=[<Sunny,Warm,Normal,Strong,Warm,Same>]

Step 3: Consider second sample as it is also positive
H=[<Sunny,Warm,?,Strong,Warm,Same>]

Step 4: Skip third sample as it is negative and then consider fourth sample
H=[<Sunny,Warm,?,Strong,?,?>]

The key property of the FIND-S algorithm —

• FIND-S is guaranteed to output the most specific hypothesis within H that is
consistent with the positive training examples

FIND-S algorithm’s final hypothesis will also be consistent with the negative examples
provided the correct target concept is contained in H, and provided the training examples
are correct

DEPT. OF AIML , JNNCE 27

MACHINE LEARNING STUDY MATERIAL,

Unanswered Questions by Find-S algorithm in Machine Learning
1. Has the learner converged to the correct target concept? Although FIND-S will find

a hypothesis consistent with the training data, it has no way to determine whether
it has found the only hypothesis in H consistent with the data

2. Why prefer the most specific hypothesis? In case there are multiple hypotheses
consistent with the training examples, FIND-S will find the most specific.

3. Are the training examples consistent? In most practical learning problems there is
some chance that the training examples will contain at least some errors or noise.

4. What if there are several maximally specific consistent hypotheses? In the
hypothesis language H for the EnjoySport task, there is always a unique, most
specific hypothesis consistent with any set of positive examples.

Consistent and Version Space
A hypothesis h is consistent with a set of training examples D if and only if h(x) = c(x) for
each example (x, c(x)) in D.

The version space, denoted VS_H,D with respect to hypothesis space H and training
examples D, is the subset of hypotheses from H consistent with the training examples in D

The List-Then-Eliminate algorithm
One obvious way to represent the version space is simply to list all of its members. This
leads to a simple learning algorithm, which we might call the List-Then-Eliminate
algorithm. The algorithm is as follows :

Representation for Version Spaces
we can represent the version space in terms of its most specific and most general
members. For the enjoysport training examples D, we can output the below list of
hypothesis which are consistent with D. In other words, the below list of hypothesis is a
version space.

DEPT. OF AIML , JNNCE 28

MACHINE LEARNING STUDY MATERIAL,

n the list of hypothesis, there are two extremes representing general (h1 and h2) and
specific (h6) hypothesis. Lets define these 2 extremes as general boundary G and specific
boundary S.
Definition — G
The general boundary G, with respect to hypothesis space H and training data D, is the set
of maximally general members of H consistent with D.
Definition — S
The specific boundary S, with respect to hypothesis space H and training data D, is the set
of minimally general (i.e., maximally specific) members of H consistent with D.

Candidate Elimination algorithm
The Candidate-Elimination algorithm computes the version space containing all
hypotheses from H that are consistent with an observed sequence of training example.

Step 1: Read the dataset
Step 2: Initialize S and G
Step 3: Read a sample from dataset
Step 4: If sample is not positive go to Step 5
Step 4(a): If first sample, store all features to S. Go to Step 4(d)
Step 4(b): Otherwise, check if feature not same as S.
Step 4(c): If not, store ‘?’ to S.
Step 4(d): Check if G is not ‘?’ and S is ‘?’, then make G as ‘?’
Step 5: For negative sample, check feature is not same as S and S is not ‘?’
Step 5(a): If yes, then store S to G. Else G=‘?’
Step 6: Check whether all samples are over. If no goto Step 3
Step 7: Display S and G

Example:
Consider the dataset:

Sky AirTemp Humidity Wind Water Forecast EnjoySport

Sunny Warm Normal Strong Warm Same Yes

Sunny Warm High Strong Warm Same Yes

Rainy Cold High Strong Warm Change No

DEPT. OF AIML , JNNCE 29

MACHINE LEARNING STUDY MATERIAL,

Sunny Warm High Strong Cool Change Yes

Initial Values:
G0=[<?,?,?,?,?,?>, <?,?,?,?,?,?>, <?,?,?,?,?,?>, <?,?,?,?,?,?>, <?,?,?,?,?,?>, <?,?,?,?,?,?>]
S0=[<0,0,0,0,0,0>]

Step1: For first sample (positive – update S)
G1=[<?,?,?,?,?,?>, <?,?,?,?,?,?>, <?,?,?,?,?,?>, <?,?,?,?,?,?>, <?,?,?,?,?,?>, <?,?,?,?,?,?>]
S1=[<Sunny,Warm,Normal,Strong,Warm,Same>]

Step2: For second sample (positive – update S)
G2=[<?,?,?,?,?,?>, <?,?,?,?,?,?>, <?,?,?,?,?,?>, <?,?,?,?,?,?>, <?,?,?,?,?,?>, <?,?,?,?,?,?>]
S2=[<Sunny,Warm,?,Strong,Warm,Same>]

Step 3: For third sample (negative – update G)
G3=[<Sunny,?,?,?,?,?>, <?,Warm,?,?,?,?>, <?,?,?,?,?,?>, <?,?,?,?,?,?>, <?,?,?,?,?,?>,
<?,?,?,?,?,Same>]
S3=[<Sunny,Warm,?,Strong,Warm,Same>]
Step 4: For fourth sample (positive – update S)
G4=[<Sunny,?,?,?,?,?>, <?,Warm,?,?,?,?>, <?,?,?,?,?,?>, <?,?,?,?,?,?>, <?,?,?,?,?,?>, <?,?,?,?,?,?>]
S4=[<Sunny,Warm,?,Strong,?,?]

Inductive Bias
Every machine learning algorithm with any ability to generalize beyond the training data
that it sees has, by definition, some type of inductive bias. That is, there is
some fundamental assumption or set of assumptions that the learner makes about the
target function that enables it to generalize beyond the training data. he candidate
elimination algorithm converge towards the true target concept provided it is given
accurate training examples and provided its initial hypothesis space contains the target
concept.

• What if the target concept is not contained in the hypothesis space?
• Can we avoid this difficulty by using a hypothesis space that includes every

possible hypothesis ?
• How does the size of this hypothesis space influence the ability of the

algorithm to generalize to unobserved instances ?
• How does the size of the hypothesis space influence the number of training

examples that must be observed ?

The following three learning algorithms are listed from weakest to strongest bias.
1.Rote-learning : storing each observed training example in memory. If the instance is
found in memory, the store classification is returned.
Inductive bias : nothing — Weakest bias
2.Candidate-Elimination algorithm : new instances are classified only in the case where all
members of the current version space agree in the classification.
Inductive bias : Target concept can be represented in its hypothesis space

DEPT. OF AIML , JNNCE 30

MACHINE LEARNING STUDY MATERIAL,

3. Find-S : find the most specific hypothesis consistent with the training examples. It then
uses this hypothesis to classify all subsequent instances.
Inductive bias : Target concept can be represented in its hypothesis space + All instances
are negative instances unless the opposite is entailed by its other knowledge — Strongest
bias

DEPT. OF AIML , JNNCE 31

MACHINE LEARNING STUDY MATERIAL,

MODULE-II

Working with real data
Many of the Machine Learning Crash Course Programming Exercises use the California
housing data set, which contains data drawn from the 1990 U.S. Census. The following
table provides descriptions, data ranges, and data types for each feature in the data set.

Column title Description

longitude A measure of how far west a house is; a more negative value is farther
west

latitude A measure of how far north a house is; a higher value is farther north

housingMedianAge Median age of a house within a block; a lower number is a newer
building

totalRooms Total number of rooms within a block

totalBedrooms Total number of bedrooms within a block

population Total number of people residing within a block

households Total number of households, a group of people residing within a home
unit, for a block

medianIncome Median income for households within a block of houses (measured in
tens of thousands of US Dollars)

medianHouseValue Median house value for households within a block (measured in US
Dollars)

Ocean proximity The distance from the house to ocean expressed as different categories

Exploring the dataset

Google colab is used to operate on this data set and perform machine learning
preprocessing operations and machine learning techniques.

#Code snippet to load the dataset
import pandas as pd
housing=pd.read_csv("/content/sample_data/housing.csv",sep=",")

#Code snippet for descriptive statistics
housing.head() #Display first five records
housing.info()
#Get metadata information like number of samples and datatypes of each column and
number of non-null values.

#Working with categorical column attribute
#Number of instances of each category
housing["ocean_proximity"].value_counts()

DEPT. OF AIML , JNNCE 32

MACHINE LEARNING STUDY MATERIAL,

Get descriptive stats
housing.describe()
Different statistics like count, mean, standard deviation, minimum, 25%, 50% and 75%
data and maximum values are displayed.
#Visualization
import matplotlib.pyplot as plt
housing.hist(bins=50,figsize=(12,8))
plt.show()

Dataset splitting
Two standard techniques for splitting data set is random shuffling and stratified
sampling. A simple random sample is used to represent the entire data population and
randomly selects individuals from the population without any other consideration.
A stratified random sample, on the other hand, first divides the population into smaller
groups, or strata, based on shared characteristics. Therefore, a stratified sampling
strategy will ensure that members from each subgroup are included in the data analysis.

Code for simple random sampling:
import numpy as np
def shuffle_and_split(dataset,test_ratio):
 test_size=int(test_ratio*len(dataset))
 np.random.seed(42)
 shuffled_indices=np.random.permutation(len(dataset))
 test_indices=shuffled_indices[:test_size]
 train_indices=shuffled_indices[test_size:]
 return dataset.iloc[train_indices],dataset.iloc[test_indices]
train_data,test_data=shuffle_and_split(housing,0.2)

Code for stratified random sampling:
#create income categories
import matplotlib.pyplot as plt
housing["income_cat"]=pd.cut(housing["median_income"],
 bins=[0,1.5,3.0,4.5,6,np.inf],labels=[1,2,3,4,5])
#Stratified sampling
from sklearn.model_selection import StratifiedShuffleSplit
splitter=StratifiedShuffleSplit(n_splits=1,test_size=0.2,random_state=42)
strat_splits=[]
for train_index,test_index in splitter.split(housing,housing['income_cat']):
 train_set=housing.iloc[train_index]
 test_set=housing.iloc[test_index]
 strat_splits.append([train_set,test_set])

Exploratory data analysis
Exploratory data analysis is one of the basic and essential steps of a data science project.
A data scientist involves almost 70% of his work in doing the EDA of the dataset. In this

DEPT. OF AIML , JNNCE 33

MACHINE LEARNING STUDY MATERIAL,

article, we will discuss what is Exploratory Data Analysis (EDA) and the steps to
perform EDA. Key aspects of EDA include:

• Distribution of Data: Examining the distribution of data points to
understand their range, central tendencies (mean, median), and dispersion
(variance, standard deviation).

• Graphical Representations: Utilizing charts such as histograms, box plots,
scatter plots, and bar charts to visualize relationships within the data and
distributions of variables.

• Outlier Detection: Identifying unusual values that deviate from other data
points. Outliers can influence statistical analyses and might indicate data
entry errors or unique cases.

• Correlation Analysis: Checking the relationships between variables to
understand how they might affect each other. This includes computing
correlation coefficients and creating correlation matrices.

• Handling Missing Values: Detecting and deciding how to address missing
data points, whether by imputation or removal, depending on their impact
and the amount of missing data.

• Summary Statistics: Calculating key statistics that provide insight into data
trends and nuances

Code for EDA using scatter plot of geography
housing1=train_set.copy()
housing1.plot(kind="scatter",x="longitude",y="latitude",grid=True)
plt.show()

housing1.plot(kind="scatter",x="longitude",y="latitude",grid=True,alpha=0.2)
plt.show()

DEPT. OF AIML , JNNCE 34

MACHINE LEARNING STUDY MATERIAL,

Population and expensive relationship
housing1.plot(kind="scatter",x="longitude",y="latitude",grid=True,
s=housing1["population"]/100,label="population",
c="median_house_value",cmap="jet",colorbar=True,figsize=(10,7))
plt.show()

#Studying correlation
Correlation is a key statistical concept that researchers employ to analyze connections
within their data. It helps us to Understand the Relationship Between Variables. Knowing
the correlation helps uncover important relationships between elements we are
investigating. It provides insight into how changes in one variable may correlate with or

DEPT. OF AIML , JNNCE 35

MACHINE LEARNING STUDY MATERIAL,

predict changes in another. As researchers we rely on correlation to better understand the
links between different phenomena.
The correlation coefficient quantifies the strength and direction of the correlation. Values
closer to 1 or -1 represent stronger correlations, while those closer to 0 indicate little
connection between the variables.
Code for correlation
housing2=housing1.drop(['ocean_proximity','income_cat'],axis=1)
corr_matrix=housing2.corr()
#Correlation with target attributes
corr_matrix["median_house_value"].sort_values(ascending=False)
Output:
median_house_value 1.000000
median_income 0.688380
total_rooms 0.137455
housing_median_age 0.102175
households 0.071426
total_bedrooms 0.054635
population -0.020153
longitude -0.050859
latitude -0.139584
Name: median_house_value, dtype: float64
Hence target attribute median_house_value is highly correlated to median_income

Feature Engineering
Feature engineering is the process of transforming raw data into features that are
suitable for machine learning models. In other words, it is the process of selecting,
extracting, and transforming the most relevant features from the available data to build
more accurate and efficient machine learning models.
The success of machine learning models heavily depends on the quality of the features
used to train them. Feature engineering involves a set of techniques that enable us to
create new features by combining or transforming the existing ones. These techniques
help to highlight the most important patterns and relationships in the data, which in
turn helps the machine learning model to learn from the data more effectively.

DEPT. OF AIML , JNNCE 36

MACHINE LEARNING STUDY MATERIAL,

Code for Feature Engineering
housing2["rooms_per_house"]=housing2["total_rooms"]/housing2["households"]
housing2["bedrooms_ratio"]=housing2["total_bedrooms"]/housing2["total_rooms"]
housing2["people_per_house"]=housing2["population"]/housing2["households"]
Study their impact
corr_matrix=housing2.corr()
corr_matrix["median_house_value"].sort_values(ascending=False)

Output:
median_house_value 1.000000
median_income 0.688380
rooms_per_house 0.143663
total_rooms 0.137455
housing_median_age 0.102175
households 0.071426
total_bedrooms 0.054635
population -0.020153
people_per_house -0.038224
longitude -0.050859
latitude -0.139584
bedrooms_ratio -0.256397

Hence new attributes are much more correlated with target attribute than the older
features.

Handling Missing data
#Old approaches
#Get rid of corresponding districts
housing1.dropna(subset=["total_bedrooms"],inplace=True)
#Get rid of corresponding column
housing1.drop("total_bedrooms",axis=1)
#Imputation
median=housing1["total_bedrooms"].median()
housing1["total_bedrooms"].fillna(median,inplace=True)

New approach
from sklearn.impute import SimpleImputer
imputer=SimpleImputer(strategy="median")
housing_num=housing1.select_dtypes(include=[np.number])
imputer.fit(housing_num)
X=imputer.transform(housing_num)
housing_tr=pd.DataFrame(X,
columns=housing_num.columns,index=housing_num.index)
housing_tr.info()

Handling Text and Categorical data

DEPT. OF AIML , JNNCE 37

MACHINE LEARNING STUDY MATERIAL,

Numerical data, as its name suggests, involves features that are only composed of
numbers, such as integers or floating-point values. Categorical data are variables that
contain label values rather than numeric values. The number of possible values is often
limited to a fixed set. Categorical variables are often called nominal.
Some examples include:

• A “pet” variable with the values: “dog” and “cat“.
• A “color” variable with the values: “red“, “green“, and “blue“.
• A “place” variable with the values: “first“, “second“, and “third“.

A numerical variable can be converted to an ordinal variable by dividing the range of the
numerical variable into bins and assigning values to each bin. For example, a numerical
variable between 1 and 10 can be divided into an ordinal variable with 5 labels with an
ordinal relationship: 1-2, 3-4, 5-6, 7-8, 9-10. This is called discretization.

• Nominal Variable (Categorical). Variable comprises a finite set of discrete values
with no relationship between values.

• Ordinal Variable. Variable comprises a finite set of discrete values with a ranked
ordering between values.

Some algorithms can work with categorical data directly. For example, a decision tree can
be learned directly from categorical data with no data transform required (this depends
on the specific implementation). Many machine learning algorithms cannot operate on
label data directly. They require all input variables and output variables to be numeric.

Ordinal Encoding:
In ordinal encoding, each unique category value is assigned an integer value. This is called
an ordinal encoding or an integer encoding and is easily reversible. Often, integer values
starting at zero are used.

Eg. Python code to perform ordinal encoding on California housing dataset:
housing_cat=housing[['ocean_proximity']]
from sklearn.preprocessing import OrdinalEncoder
ordinal_encoder=OrdinalEncoder()
eh=ordinal_encoder.fit_transform(housing_cat)
print(eh)
print(ordinal_encoder.categories_)

One-Hot Encoding
For categorical variables where no ordinal relationship exists, the integer encoding may
not be enough, at best, or misleading to the model at worst. Forcing an ordinal
relationship via an ordinal encoding and allowing the model to assume a natural ordering
between categories may result in poor performance or unexpected results (predictions
halfway between categories).
 In this case, a one-hot encoding can be applied to the ordinal representation.
This is where the integer encoded variable is removed and one new binary variable is
added for each unique integer value in the variable.

https://en.wikipedia.org/wiki/Categorical_variable

DEPT. OF AIML , JNNCE 38

MACHINE LEARNING STUDY MATERIAL,

Eg. Python code to perform OneHot encoding on California housing dataset:

from sklearn.preprocessing import OneHotEncoder
ohe=OneHotEncoder()
oo=ohe.fit_transform(housing_cat)
print(oo)

Feature Scaling and Transformation
Oftentimes, we have datasets in which different columns have different units – like one
column can be in kilograms, while another column can be in centimeters. Furthermore,
we can have columns like income which can range from 20,000 to 100,000, and even
more; while an age column which can range from 0 to 100(at the most). Thus, Income is
about 1,000 times larger than age.
 When we feed these features to the model as is, there is every chance that the
income will influence the result more due to its larger value. But this doesn’t necessarily
mean it is more important as a predictor. So, to give importance to both Age, and Income,
we need feature scaling.

MinMax Scaler
The MinMax scaler is one of the simplest scalers to understand. It just scales all the data
between 0 and 1. The formula for calculating the scaled value is-
x_scaled = (x – x_min)/(x_max – x_min)
Thus, a point to note is that it does so for every feature separately. Though (0, 1) is the
default range, we can define our range of max and min values as well.

#Eg Python code for MinMax Scaling
from sklearn.preprocessing import MinMaxScaler
mms=MinMaxScaler(feature_range=(-1,1))
hnm=mms.fit_transform(housing_num)

Standard Scaler
Just like the MinMax Scaler, the Standard Scaler is another popular scaler that is very easy
to understand and implement.
For each feature, the Standard Scaler scales the values such that the mean is 0 and the
standard deviation is 1(or the variance).
x_scaled = x – mean/std_dev
However, Standard Scaler assumes that the distribution of the variable is normal

#Eg Python code for MinMax Scaling
from sklearn.preprocessing import StandardScaler
ss=StandardScaler()
snm=ss.fit_transform(housing_num)

Custom Transformer

DEPT. OF AIML , JNNCE 39

MACHINE LEARNING STUDY MATERIAL,

Consider this situation – Suppose you have your own Python function to transform the
data. Sklearn also provides the ability to apply this transform to our dataset using what
is called a FunctionTransformer. Let us take a simple example. I have a feature
transformation techniques that involves taking (log to the base 2) of the values. In
NumPy, there is a function called log2 which does that for us. Thus, we can now apply the
FunctionTransformer:
from sklearn.preprocessing import FunctionTransformer
transformer = FunctionTransformer(np.log2, validate = True)

df_scaled[col_names] = transformer.transform(features.values)
df_scaled
Here is the output with log-base 2 applied on Age and Income:

Transformation Pipelines
A machine learning pipeline is used to help automate machine learning workflows. They
operate by enabling a sequence of data to be transformed and correlated together in a
model that can be tested and evaluated to achieve an outcome, whether positive or
negative.
 Machine learning (ML) pipelines consist of several steps to train a model.
Machine learning pipelines are iterative as every step is repeated to continuously
improve the accuracy of the model and achieve a successful algorithm. To build better
machine learning models, and get the most value from them, accessible, scalable and
durable storage solutions are imperative, paving the way for on-premises object storage.

Need of ML pipelines:

1. The main objective of having a proper pipeline for any ML model is to exercise
control over it. A well-organised pipeline makes the implementation more flexible.

2. The term ML model refers to the model that is created by the training process.
3. The learning algorithm finds patterns in the training data that map the input data

attributes to the target (the answer to be predicted), and it outputs an ML model
that captures these patterns.

4. A model can have many dependencies and to store all the components to make
sure all features available both offline and online for deployment, all the
information is stored in a central repository.

5. A pipeline consists of a sequence of components which are a compilation of
computations. Data is sent through these components and is manipulated with the
help of computation.

https://www.analyticsvidhya.com/blog/2022/01/a-guide-to-understand-machine-learning-pipeline-with-case-study/?utm_source=Backlink&utm_medium=SEO
https://www.analyticsvidhya.com/blog/2022/01/a-guide-to-understand-machine-learning-pipeline-with-case-study/?utm_source=Backlink&utm_medium=SEO

DEPT. OF AIML , JNNCE 40

MACHINE LEARNING STUDY MATERIAL,

Eg Python code for creating pipelines in ML – Numerical data
from sklearn.pipeline import Pipeline
nump=Pipeline([
 ("impute",SimpleImputer(strategy="median")),
 ("standardize",StandardScaler())
])
hnump=nump.fit_transform(housing_num)
hnump[:2].round(2)

Eg Python code for creating pipelines in ML- Categorical and Numerical data
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import make_pipeline
na=["longitude","latitude","housing_median_age","total_rooms","total_bedrooms","popu
lation","households","median_income"]
ca=["ocean_proximity"]
catp=make_pipeline(
 SimpleImputer(strategy="most_frequent"),
 OneHotEncoder()
)
prep=ColumnTransformer([
 ("num",nump,na),
 ("cat",catp,ca)]
)
hp=prep.fit_transform(housing)

Select and Train a model
Linear Model:
from sklearn.linear_model import LinearRegression
lr=make_pipeline(prep,LinearRegression())
housing=strat_train_set.drop("median_house_value",axis=1)
housing_labels=strat_train_set["median_house_value"].copy()
lr.fit(housing,housing_labels)
hpred=lr.predict(housing)

Non-Linear Model:
from sklearn.metrics import mean_squared_error
lrmse=mean_squared_error(housing_labels,hpred,squared=False)
print(lrmse)
from sklearn.tree import DecisionTreeRegressor
treg=make_pipeline(prep,DecisionTreeRegressor())
treg.fit(housing,housing_labels)
hpred=treg.predict(housing)
from sklearn.metrics import mean_squared_error

DEPT. OF AIML , JNNCE 41

MACHINE LEARNING STUDY MATERIAL,

lrmse=mean_squared_error(housing_labels,hpred,squared=False)
print(lrmse)

Cross Validation in Machine Learning
Cross validation is a technique used in machine learning to evaluate the performance of
a model on unseen data. It involves dividing the available data into multiple folds or
subsets, using one of these folds as a validation set, and training the model on the
remaining folds. This process is repeated multiple times, each time using a different fold
as the validation set. Finally, the results from each validation step are averaged to
produce a more robust estimate of the model’s performance.
 The main purpose of cross validation is to prevent overfitting, which occurs
when a model is trained too well on the training data and performs poorly on new, unseen
data. By evaluating the model on multiple validation sets, cross validation provides a
more realistic estimate of the model’s generalization performance, i.e., its ability to
perform well on new, unseen data.

Eg Python code to demonstrate cross validation
from sklearn.model_selection import cross_val_score
trmses=-
cross_val_score(treg,housing,housing_labels,scoring="neg_root_mean_squared_error",cv
=10)
from sklearn.ensemble import RandomForestRegressor
freg=make_pipeline(prep,RandomForestRegressor())
freg.fit(housing,housing_labels)
frmses=-
cross_val_score(freg,housing,housing_labels,scoring="neg_root_mean_squared_error",cv
=10)

Randomized and Grid Search for Hyperparameter optimization
Hyperparameters are the parameters that determine the behavior and performance of a
machine-learning model. These parameters are not learned during training but are
instead set prior to training. The process of finding the optimal values for these
hyperparameters is known as hyperparameter optimization.
 Grid search is a method for hyperparameter optimization that involves
specifying a list of values for each hyperparameter that you want to optimize, and then
training a model for each combination of these values. For example, if you want to
optimize two hyperparameters, alpha and beta, with grid search, you would specify a list
of values for alpha and a separate list of values for the beta. The grid search algorithm
would then train a model using every combination of these values and evaluate the
performance of each model. The optimal values for the hyperparameters are then chosen
based on the performance of the models.

Eg Python code for GridSearch
from sklearn.model_selection import GridSearchCV

https://www.geeksforgeeks.org/overfitting-and-regularization-in-ml/

DEPT. OF AIML , JNNCE 42

MACHINE LEARNING STUDY MATERIAL,

Define the hyperparameters and their possible values
param_grid = {
 'alpha': [0.01, 0.1, 1.0, 10.0],
 'beta': [0.01, 0.1, 1.0, 10.0]
}

Create a model
model = SomeModel()

Use grid search to find the optimal hyperparameters
grid_search = GridSearchCV(model, param_grid)
grid_search.fit(X, y)

Print the optimal values for the hyperparameters
print(grid_search.best_params_)
Randomized search is another method for hyperparameter optimization that can be more
efficient than grid search in some cases. With randomized search, instead of specifying a
list of values for each hyperparameter, you specify a distribution for each
hyperparameter. The randomized search algorithm will then sample values for each
hyperparameter from its corresponding distribution and train a model using the sampled
values. This process is repeated a specified number of times, and the optimal values for
the hyperparameters are chosen based on the performance of the models.

Eg Python code for Randomized Search
from sklearn.model_selection import RandomizedSearchCV
from scipy.stats import uniform

Define the hyperparameters and their distributions
param_distributions = {
 'alpha': uniform(0.01, 10.0),
 'beta': uniform(0.01, 10.0)
}

Create a model
model = SomeModel()

Use randomized search to find the optimal hyperparameters
random_search = RandomizedSearchCV(model,

 param_distributions)
random_search.fit(X, y)

Print the optimal values for the hyperparameters
print(random_search.best_params_)

Advantages of Randomized Search over Grid Search:

DEPT. OF AIML , JNNCE 43

MACHINE LEARNING STUDY MATERIAL,

One advantage of RandomizedSearchCV over GridSearchCV is that
RandomizedSearchCV can be more efficient if the search space is large since it only
samples a subset of the possible combinations rather than evaluating them all. This can
be especially useful if the model is computationally expensive to fit, or if the
hyperparameters have continuous values rather than discrete ones.

Another advantage of RandomizedSearchCV is that it can be more robust to the
risk of overfitting since it does not exhaustively search the entire search space. If the
hyperparameter search space is very large and the model is relatively simple, it is
possible that GridSearchCV could overfit to the training data by finding a set of
hyperparameters that works well on the training set but not as well on unseen data.
RandomizedSearchCV can help mitigate this risk by sampling randomly from the search
space rather than evaluating every combination.

MODULE II:

Classification
The Classification algorithm is a Supervised Learning technique that is used to identify
the category of new observations on the basis of training data. In Classification, a program
learns from the given dataset or observations and then classifies new observation into a
number of classes or groups. Such as, Yes or No, 0 or 1, Spam or Not Spam, cat or dog, etc.
Classes can be called as targets/labels or categories.
Unlike regression, the output variable of Classification is a category, not a value, such as
"Green or Blue", "fruit or animal", etc. Since the Classification algorithm is a Supervised
learning technique, hence it takes labeled input data, which means it contains input with
the corresponding output.

MNIST dataset
The MNIST database (Modified National Institute of Standards and Technology database)
is a large collection of handwritten digits. It has a training set of 60,000 examples, and a
test set of 10,000 examples. It is a subset of a larger NIST Special Database 3 (digits
written by employees of the United States Census Bureau) and Special Database 1 (digits
written by high school students) which contain monochrome images of handwritten
digits. The digits have been size-normalized and centered in a fixed-size image. The
original black and white (bilevel) images from NIST were size normalized to fit in a 20x20
pixel box while preserving their aspect ratio. The resulting images contain grey levels as
a result of the anti-aliasing technique used by the normalization algorithm. the images
were centered in a 28x28 image by computing the center of mass of the pixels, and
translating the image so as to position this point at the center of the 28x28 field.

Programming snippet to interact with MNIST dataset

from sklearn.datasets import fetch_openml

https://www.geeksforgeeks.org/underfitting-and-overfitting-in-machine-learning/

DEPT. OF AIML , JNNCE 44

MACHINE LEARNING STUDY MATERIAL,

mnist=fetch_openml("mnist_784",as_frame=False)
#as_frame=False as we need to process image as numpy arrays

#extracting features and target
x,y=mnist.data,mnist.target

#split dataset into train and test
xtrain,xtest,ytrain,ytest=x[:60000],x[60000:],y[:60000],y[60000:]

#Code to display a digit
import matplotlib.pyplot as plt
def show_digit(img):
 imgdata=img.reshape(28,28)
 plt.imshow(imgdata,cmap="binary")

show_digit(x[1])

Training a Binary Classifier
In a binary classification task, the goal is to classify the input data into two mutually
exclusive categories. The training data in such a situation is labeled in a binary format:
true and false; positive and negative; 0 and 1; spam and not spam, etc. depending on the
problem being tackled. For instance, we might want to detect whether a given image is a
truck or a boat. Logistic Regression and Support Vector Machines algorithms are natively
designed for binary classifications. However, other algorithms such as K-Nearest
Neighbors and Decision Trees can also be used for binary classification.

Python code for a binary classifier for digits (5 or not-5)
ytrain5=(ytrain=='5')
ytest5=(ytest=='5')
from sklearn.linear_model import SGDClassifier
sg=SGDClassifier()
sg.fit(xtrain,ytrain5)
sg.predict([x[1]])

Performance Measures of Binary classifiers

Crossvalidation
 Cross validation is a technique used in machine learning to evaluate the performance
of a model on unseen data. It involves dividing the available data into multiple folds or
subsets, using one of these folds as a validation set, and training the model on the
remaining folds. This process is repeated multiple times, each time using a different fold
as the validation set. Finally, the results from each validation step are averaged to
produce a more robust estimate of the model’s performance. The main purpose of cross
validation is to prevent overfitting, which occurs when a model is trained too well on

DEPT. OF AIML , JNNCE 45

MACHINE LEARNING STUDY MATERIAL,

the training data and performs poorly on new, unseen data. By evaluating the model on
multiple validation sets, cross validation provides a more realistic estimate of the
model’s generalization performance, i.e., its ability to perform well on new, unseen data.

#Python code for cross-validation on digit binary classifier that computes
accuracy of classification
from sklearn.model_selection import cross_val_score
cross_val_score(sg,xtrain,ytrain5,cv=3,scoring='accuracy')

#Python code for prediction with cross validation
from sklearn.model_selection import cross_val_predict
ypred=cross_val_predict(sg,xtrain,ytrain5,cv=3)

Confusion Matrix
A confusion matrix is a matrix that summarizes the performance of a machine learning
model on a set of test data. It is a means of displaying the number of accurate and
inaccurate instances based on the model’s predictions. It is often used to measure the
performance of classification models, which aim to predict a categorical label for each
input instance.
The matrix displays the number of instances produced by the model on the test data.

• True positives (TP): occur when the model accurately predicts a positive
data point.

• True negatives (TN): occur when the model accurately predicts a negative
data point.

• False positives (FP): occur when the model predicts a positive data point
incorrectly.

• False negatives (FN): occur when the model mispredicts a negative data
point.

Table for confusion matrix

Actual Predicted
Non-5 5

Non-5 TN FP
5 FN TP

#Python code to generate Confusion matrix
from sklearn.metrics import confusion_matrix
cm=confusion_matrix(ytrain5,ypred)
print(cm)

Precision
Precision is defined as the ratio of correctly classified positive samples (True Positive) to
a total number of classified positive samples (either correctly or incorrectly).

Precision = True Positive/True Positive + False Positive
Precision = TP/TP+FP

DEPT. OF AIML , JNNCE 46

MACHINE LEARNING STUDY MATERIAL,

precision helps us to visualize the reliability of the machine learning model in classifying
the model as positive

Recall
The recall is calculated as the ratio between the numbers of Positive samples correctly
classified as Positive to the total number of Positive samples. The recall measures the
model's ability to detect positive samples. The higher the recall, the more positive
samples detected.

Recall = True Positive/True Positive + False Negative
Recall = TP/TP+FN

Unlike Precision, Recall is independent of the number of negative sample classifications.
Further, if the model classifies all positive samples as positive, then Recall will be 1.

#Python code for precision and recall
from sklearn.metrics import precision_score,recall_score,f1_score
precision_score(ytrain5,ypred)
recall_score(ytrain5,ypred)

Difference between Precision and Recall in Machine Learning

Precision Recall

It helps us to measure the ability to
classify positive samples in the model.

It helps us to measure how many
positive samples were correctly
classified by the ML model.

While calculating the Precision of a
model, we should consider both
Positive as well as Negative samples
that are classified.

While calculating the Recall of a model,
we only need all positive samples while
all negative samples will be neglected.

When a model classifies most of the
positive samples correctly as well as
many false-positive samples, then the
model is said to be a high recall and low
precision model.

When a model classifies a sample as
Positive, but it can only classify a few
positive samples, then the model is said
to be high accuracy, high precision, and
low recall model.

The precision of a machine learning
model is dependent on both the
negative and positive samples.

Recall of a machine learning model is
dependent on positive samples and
independent of negative samples.

In Precision, we should consider all
positive samples that are classified as
positive either correctly or incorrectly.

The recall cares about correctly
classifying all positive samples. It does

DEPT. OF AIML , JNNCE 47

MACHINE LEARNING STUDY MATERIAL,

not consider if any negative sample is
classified as positive.

F1-score
Precision and recall offer a trade-off, i.e., one metric comes at the cost of another. More
precision involves a harsher critic (classifier) that doubts even the actual positive samples from
the dataset, thus reducing the recall score. On the other hand, more recall entails a lax critic that
allows any sample that resembles a positive class to pass, which makes border-case negative
samples classified as “positive,” thus reducing the precision. Ideally, we want to maximize both
precision and recall metrics to obtain the perfect classifier.

The F1 score combines precision and recall using their harmonic mean, and maximizing the F1
score implies simultaneously maximizing both precision and recall. Thus, the F1 score has
become the choice of researchers for evaluating their models in conjunction with accuracy.
The F1 score is calculated as the harmonic mean of the precision and recall scores, as shown
below. It ranges from 0-100%, and a higher F1 score denotes a better quality classifier.

#API for f1-score
f1_score(ytrain5,ypred)

Precision-recall trade-off
The classification threshold is an important parameter when building and evaluating
classification models. It can significantly impact the model's performance and the
decisions made based on its predictions.
A typical default choice is to use a threshold of 0.5.
In the spam example, that would mean that any email with a predicted probability greater
than 0.5 is classified as spam and put in a spam folder. Any email with a predicted
probability of less than or equal to 0.5 is classified as legitimate.
Each metric has its limitations. Precision prioritizes “correctness” but may not account
for the cost of missing positive cases. Recall emphasizes “completeness” but may result
in falsely flagging some instances. Both types of errors can be expensive, depending on
the specific use case. Since precision and recall measure different aspects of the model
quality, this leads to the precision-recall trade-off. You must balance their importance
and account for it when training and evaluating ML models.
To balance precision and recall, you should consider the costs of false positives and false
negatives errors. This is highly custom and depends on the business context. You might
make different choices when solving the same problem in different companies.

Optimize for recall
Say your task is to score the customers likely to buy a particular product. You then pass
this list of high-potential customers to a call center team to contact them. You might have

DEPT. OF AIML , JNNCE 48

MACHINE LEARNING STUDY MATERIAL,

thousands of customers registering on your website every week, and the call center
cannot reach all of them. But they can easily reach a couple of hundred.
Every customer that buys the product will make an effort well worth it. In this scenario,
the cost of false positives is low (just a quick call that does not result in a purchase), but
the value of true positives is high (immediate revenue).
In this case, you'd likely optimize for recall. You want to make sure you reach all potential
buyers. Your only limit is the number of people your call center can contact weekly. In
this case, you can set a lower decision threshold. Your model might have low
precision, but this is not a big deal as long as you reach your business goals and make a
certain number of sales.

Optimize for precision
Let's say you are working for a food delivery company. Your team is developing a machine
learning model to predict which orders might be delivered in under 20 minutes based on
factors such as order size, restaurant location, time of day, and delivery distance.
You will use this prediction to display a "fast delivery" label next to a potential order.
In this case, optimizing for precision makes sense. False positives (orders predicted to be
completed fast but actually delayed) can result in a loss of customer trust and ultimately
lead to decreased sales. On the other hand, false negatives (orders predicted to take
longer but completed in under 20 minutes) will likely have no consequences at all, as the
customer would simply be pleasantly surprised by the fast delivery. Optimizing for
precision typically means setting a higher classification threshold.

Balance precision and recall
consider a scenario where you are developing a model to detect fraudulent transactions
in a banking system. In this case, the cost of false positives is high, as it can lead to
blocking legitimate transactions and causing inconvenience to the customers. On the
other hand, the cost of false negatives is also significant, as it can result in financial loss
and lost trust due to fraudulent transactions.
In this case, you need to strike a balance between precision and recall. While you need to
detect as many fraudulent transactions as possible (high recall), you must also ensure
that you don't flag legitimate transactions as fraudulent too often (high precision). The
threshold for detecting a fraudulent transaction must be set carefully, considering the
costs associated with both types of errors.
Since the fraud cost can differ, you can also set different thresholds based on the
transaction amounts. For example, you can set a lower decision threshold for high-
volume transactions since they come with a higher potential financial loss. For smaller
amounts (which are also more frequent), you can set the threshold higher to ensure you
do not inconvenience customers too much.

Precision-recall curve
One approach is the precision-recall curve. It shows the value pairs between precision
and recall at different thresholds.
#Code for precision-recall curve
yscores=cross_val_predict(sg,xtrain,ytrain5,cv=3,
 method='decision_function')
from sklearn.metrics import precision_recall_curve

DEPT. OF AIML , JNNCE 49

MACHINE LEARNING STUDY MATERIAL,

p,r,t=precision_recall_curve(ytrain5,yscores)
plt.plot(t,p[:-1],label="T vs P")
plt.plot(t,r[:-1],label="T vs R")
plt.vlines(3000,0,1.0,"k","dotted",label="threshold line")
plt.show()
Output:

An ROC curve (receiver operating characteristic curve) is a graph showing the
performance of a classification model at all classification thresholds. This curve plots two
parameters:

• True Positive Rate
• False Positive Rate

An ROC curve plots TPR vs. FPR at different classification thresholds. Lowering the
classification threshold classifies more items as positive, thus increasing both False
Positives and True Positives.
#Python code for ROC curve
from sklearn.metrics import roc_curve
fpr,tpr,t=roc_curve(ytrain5,yscores)
plt.plot(fpr,tpr,label="FPR vs TPR")
plt.show()
Output:

DEPT. OF AIML , JNNCE 50

MACHINE LEARNING STUDY MATERIAL,

AUC: Area Under the ROC Curve
AUC stands for "Area under the ROC Curve." That is, AUC measures the entire two-
dimensional area underneath the entire ROC curve (think integral calculus) from (0,0) to
(1,1).
AUC provides an aggregate measure of performance across all possible classification
thresholds. One way of interpreting AUC is as the probability that the model ranks a
random positive example more highly than a random negative example. AUC is desirable
for the following two reasons:

• AUC is scale-invariant. It measures how well predictions are ranked, rather than
their absolute values.

• AUC is classification-threshold-invariant. It measures the quality of the model's
predictions irrespective of what classification threshold is chosen.

#Python code for AUC
from sklearn.metrics import roc_auc_score
a=roc_auc_score(ytrain5,yscores)
print(a)

Multiclass classification
Binary classification are those tasks where examples are assigned exactly one of two
classes. Multi-class classification is those tasks where examples are assigned exactly one
of more than two classes.

• Binary Classification: Classification tasks with two classes.
• Multi-class Classification: Classification tasks with more than two classes.

Some algorithms are designed for binary classification problems. Examples include:
• Logistic Regression
• Perceptron

DEPT. OF AIML , JNNCE 51

MACHINE LEARNING STUDY MATERIAL,

• Support Vector Machines
As such, they cannot be used for multi-class classification tasks, at least not directly.
Instead, heuristic methods can be used to split a multi-class classification problem into
multiple binary classification datasets and train a binary classification model each.
Two examples of these heuristic methods include:

• One-vs-Rest (OvR)
• One-vs-One (OvO)

One-Vs-Rest for Multi-Class Classification
One-vs-rest (OvR for short, also referred to as One-vs-All or OvA) is a heuristic method
for using binary classification algorithms for multi-class classification.
It involves splitting the multi-class dataset into multiple binary classification problems. A
binary classifier is then trained on each binary classification problem and predictions are
made using the model that is the most confident.
For example, given a multi-class classification problem with examples for each class ‘red,’
‘blue,’ and ‘green‘. This could be divided into three binary classification datasets as
follows:

• Binary Classification Problem 1: red vs [blue, green]
• Binary Classification Problem 2: blue vs [red, green]
• Binary Classification Problem 3: green vs [red, blue]

A possible downside of this approach is that it requires one model to be created for each
class. For example, three classes requires three models. This could be an issue for large
datasets (e.g. millions of rows), slow models (e.g. neural networks), or very large
numbers of classes (e.g. hundreds of classes).
#Python code for One-Vs-Rest
from sklearn.multiclass import OneVsRestClassifier
oc=OneVsRestClassifier(SVC())
oc.fit(xtrain[:2000],ytrain[:2000])
oc.predict([x[0]])
oc.decision_function([x[0]]).round(2)

One-Vs-One for Multi-Class Classification
One-vs-One (OvO for short) is another heuristic method for using binary classification
algorithms for multi-class classification.
Like one-vs-rest, one-vs-one splits a multi-class classification dataset into binary
classification problems. Unlike one-vs-rest that splits it into one binary dataset for each
class, the one-vs-one approach splits the dataset into one dataset for each class versus
every other class.
For example, consider a multi-class classification problem with four classes: ‘red,’ ‘blue,’
and ‘green,’ ‘yellow.’ This could be divided into six binary classification datasets as
follows:

• Binary Classification Problem 1: red vs. blue
• Binary Classification Problem 2: red vs. green
• Binary Classification Problem 3: red vs. yellow
• Binary Classification Problem 4: blue vs. green
• Binary Classification Problem 5: blue vs. yellow
• Binary Classification Problem 6: green vs. yellow

DEPT. OF AIML , JNNCE 52

MACHINE LEARNING STUDY MATERIAL,

The formula for calculating the number of binary datasets, and in turn, models, is as
follows:

• (NumClasses * (NumClasses – 1)) / 2
Classically, this approach is suggested for support vector machines (SVM) and related
kernel-based algorithms. This is believed because the performance of kernel methods
does not scale in proportion to the size of the training dataset and using subsets of the
training data may counter this effect.
#Python code for One-Vs-One approach
from sklearn.svm import SVC
sc=SVC()
sc.fit(xtrain[:2000],ytrain[:2000])
sc.predict([x[0]])
sds=sc.decision_function([x[0]])
sds.round(2)
classid=sds.argmax()
classid

Error Analysis
Error analysis is the process to isolate, observe and diagnose erroneous ML
predictions thereby helping understand pockets of high and low performance of the
model. When it is said that “the model accuracy is 90%” it might not be uniform across
subgroups of data and there might be some input conditions which the model fails
more.
#Python code to display number of correct and wrong digit classifications
from sklearn.model_selection import cross_val_predict
from sklearn.metrics import ConfusionMatrixDisplay
ypred=cross_val_predict(sc,xtrain,ytrain,cv=3)
ConfusionMatrixDisplay.from_predictions(ytrain,ypred)

Output:

DEPT. OF AIML , JNNCE 53

MACHINE LEARNING STUDY MATERIAL,

#Python code to display normalized errors
ConfusionMatrixDisplay.from_predictions(ytrain,ypred,normalize="true",values_format
=".0%")
plt.show()

#Python code to zoom-up the major error classifications
sample_weight=(ypred!=ytrain)
ConfusionMatrixDisplay.from_predictions(ytrain,ypred,normalize="true",sample_weigh
t=sample_weight,values_format=".0%")
plt.show()

DEPT. OF AIML , JNNCE 54

MACHINE LEARNING STUDY MATERIAL,

Multilabel classification:
It is used when there are two or more classes and the data we want to classify may
belong to none of the classes or all of them at the same time, e.g. to classify which traffic
signs are contained on an image. In multi-label classification, the training set is composed
of instances each associated with a set of labels, and the task is to predict the label sets of
unseen instances through analyzing training instances with known label sets.
Difference between multi-class classification & multi-label classification is that in multi-
class problems the classes are mutually exclusive, whereas for multi-label problems each
label represents a different classification task, but the tasks are somehow related.
For example, multi-class classification makes the assumption that each sample is assigned
to one and only one label: a fruit can be either an apple or a pear but not both at the same
time. Whereas, an instance of multi-label classification can be that a text might be about
any of religion, politics, finance or education at the same time or none of these.

Multioutput Algorithms
Multioutput algorithms are a type of machine learning approach designed for problems
where the output consists of multiple variables, and each variable can belong to a
different class or have a different range of values. In other words, multioutput problems
involve predicting multiple dependent variables simultaneously.
Two main types of Multioutput Problems:

• Multioutput Classification: In multioutput classification, each instance is
associated with a set of labels and the goal is to predict these labels
simultaneously.

• Multioutput Regression: In multioutput regression, the task is to predict
multiple continuous variables simultaneously.

https://www.geeksforgeeks.org/multiclass-classification-using-scikit-learn/
https://www.geeksforgeeks.org/multioutput-regression-in-machine-learning/

DEPT. OF AIML , JNNCE 55

MACHINE LEARNING STUDY MATERIAL,

MODULE-III

Linear Regression
Linear regression is a type of supervised machine learning algorithm that computes the
linear relationship between the dependent variable and one or more independent
features by fitting a linear equation to observed data. Linear regression is not merely a
predictive tool; it forms the basis for various advanced models. Techniques like
regularization and support vector machines draw inspiration from linear regression,
expanding its utility. Additionally, linear regression is a cornerstone in assumption
testing, enabling researchers to validate key assumptions about the data.

Linear regression model prediction:

Linear Regression model prediction (vectorized form)

MSE cost function for a Linear Regression model

Normal Equation

#Python code to predict Linear regression using Normal Equation
import numpy as np
n=100
x=2*np.random.randn(n,1)
y=4+3*x+np.random.randn(n,1)
from sklearn.preprocessing import add_dummy_feature
x1=add_dummy_feature(x)
theta=np.linalg.inv(x1.T@x1)@x1.T@y
xnew=np.array([[0],[2]])
xnew1=add_dummy_feature(xnew)
ypred=xnew1@theta

https://www.geeksforgeeks.org/supervised-machine-learning/

DEPT. OF AIML , JNNCE 56

MACHINE LEARNING STUDY MATERIAL,

ypred

#Python code to perform Linear Regression based on the library function
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x,y)
print(lr.intercept_, lr.coef_)

Gradient Descent (GD)
It is a widely used optimization algorithm in machine learning and deep learning that
minimises the cost function of a neural network model during training. It works by
iteratively adjusting the weights or parameters of the model in the direction of the
negative gradient of the cost function until the minimum of the cost function is reached.
The learning happens during the backpropagation while training the neural network-
based model. There is a term known as Gradient Descent, which is used to optimize the
weight and biases based on the cost function. The cost function evaluates the difference
between the actual and predicted outputs.
Gradient Descent is a fundamental optimization algorithm in machine learning used to
minimize the cost or loss function during model training.

• It iteratively adjusts model parameters by moving in the direction of the
steepest decrease in the cost function.

• The algorithm calculates gradients, representing the partial derivatives of
the cost function concerning each parameter.

These gradients guide the updates, ensuring convergence towards the optimal
parameter values that yield the lowest possible cost.
Gradient Descent is versatile and applicable to various machine learning models,
including linear regression and neural networks.

The path of Gradient descent is depicted in the following figure:

https://www.geeksforgeeks.org/backpropagation-in-data-mining/
https://www.geeksforgeeks.org/gradient-descent-in-linear-regression/
https://www.geeksforgeeks.org/machine-learning/

DEPT. OF AIML , JNNCE 57

MACHINE LEARNING STUDY MATERIAL,

Impact of Learning rate:
If the learning rate is too small, then the algorithm will have to go through many iterations
to converge, which will take a long time:

On the other hand, if the learning rate is too high, you might jump across the valley and
end up on the other side, possibly even higher up than you were before. This might make
the algorithm diverge, with larger and larger values, failing to find a good solution

DEPT. OF AIML , JNNCE 58

MACHINE LEARNING STUDY MATERIAL,

Challenges in Gradient Descent:
if the random initialization starts the algorithm on the left, then it will converge to a local
mini- mum, which is not as good as the global minimum. If it starts on the right, then it
will take a very long time to cross the plateau, and if you stop too early you will never
reach the global minimum.

Impact of scaling on Gradient Descent:
Gradient Descent on a training set where features 1 and 2 have the same scale (on the
left), and on a training set where feature 1 has much smaller values than feature 2 (on the
right)

DEPT. OF AIML , JNNCE 59

MACHINE LEARNING STUDY MATERIAL,

Batch Gradient Descent
In Batch Gradient Descent, all the training data is taken into consideration to take a single
step. We take the average of the gradients of all the training examples and then use that
mean gradient to update our parameters. So that’s just one step of gradient descent in one
epoch.
Cost function in Batch Gradient descent:

Gradient vector of the cost function

Gradient Descent step

#Python code to implement Full/Batch Gradient Descent
from sklearn.preprocessing import add_dummy_feature
eta=0.1
n=100
x=2*np.random.randn(n,1)
y=4+3*x+np.random.randn(n,1)
x1=add_dummy_feature(x)
m=len(x1)
theta=np.random.randn(2,1)
epochs=1000
for epoch in range(epochs):
 grad=2/m*x1.T@(x1@theta-y)
 theta=theta-eta*grad
theta

Full/Batch Gradient Descent with various learning rates:

DEPT. OF AIML , JNNCE 60

MACHINE LEARNING STUDY MATERIAL,

On the left, the learning rate is too low: the algorithm will eventually reach the solu- tion,
but it will take a long time. In the middle, the learning rate looks pretty good: in just a few
iterations, it has already converged to the solution. On the right, the learn- ing rate is too
high: the algorithm diverges.

Stochastic Gradient Descent
In Batch Gradient Descent we were considering all the examples for every step of Gradient
Descent. But what if our dataset is very huge. Deep learning models crave for data. The
more the data the more chances of a model to be good. Suppose our dataset has 5 million
examples, then just to take one step the model will have to calculate the gradients of all the
5 million examples. This does not seem an efficient way. To tackle this problem we have
Stochastic Gradient Descent. In Stochastic Gradient Descent (SGD), we consider just one
random sample at a time to take a single step. Also because the cost is so fluctuating, it will
never reach the minima but it will keep dancing around it.
#Python code to implement Stochastic Gradient Descent
from sklearn.preprocessing import add_dummy_feature
eta=0.1
n=100
x=2*np.random.randn(n,1)
y=4+3*x+np.random.randn(n,1)
x1=add_dummy_feature(x)
m=len(x1)
theta=np.random.randn(2,1)
epochs=1000
m=len(x)
def learning_schedule(t):
 return 5/(50+t)

for epoch in range(epochs):
 for iteration in range(m):
 ri=np.random.randint(m)
 xi=x1[ri:ri+1]
 yi=y[ri:ri+1]
 grad=2/m*xi.T@(xi@theta-yi)

DEPT. OF AIML , JNNCE 61

MACHINE LEARNING STUDY MATERIAL,

 eta=learning_schedule(epoch*m+iteration)
 theta=theta-eta*grad
theta

Performance of Stochastic Gradient Descent

Mini-batch Gradient Descent
We have seen the Batch Gradient Descent. We have also seen the Stochastic Gradient
Descent. Batch Gradient Descent can be used for smoother curves. SGD can be used when
the dataset is large. Batch Gradient Descent converges directly to minima. SGD converges
faster for larger datasets. But, since in SGD we use only one example at a time, we cannot
implement the vectorized implementation on it. This can slow down the computations. To
tackle this problem, a mixture of Batch Gradient Descent and SGD is used. Neither we use
all the dataset all at once nor we use the single example at a time. We use a batch of a fixed
number of training examples which is less than the actual dataset and call it a mini-batch.
Doing this helps us achieve the advantages of both the former variants.
Gradient Descent paths in parameter space

DEPT. OF AIML , JNNCE 62

MACHINE LEARNING STUDY MATERIAL,

All algorithms end up near the minimum, but Batch GD’s path actually stops at the
minimum, while both Stochastic GD and Mini-batch GD continue to walk around.
However, don’t forget that Batch GD takes a lot of time to take each step, and Stochastic
GD and Mini-batch GD would also reach the minimum if you used a good learning
schedule.

Polynomial Regression
Polynomial regression is a type of regression analysis used in statistics and machine
learning when the relationship between the independent variable (input) and the
dependent variable (output) is not linear. While simple linear regression models the
relationship as a straight line, polynomial regression allows for more flexibility by
fitting a polynomial equation to the data. When the relationship between the variables
is better represented by a curve rather than a straight line, polynomial regression can
capture the non-linear patterns in the data.
#Python code for polynomial Regression
m=100
import numpy as np
x=6*np.random.randn(m,1)-3
y=0.5*x**2+x+2+np.random.randn(m,1)
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
pf=PolynomialFeatures(degree=2,include_bias=False)
xpoly=pf.fit_transform(x)
lr=LinearRegression()
lr.fit(xpoly,y)
lr.intercept_,lr.coef_

Learning Curves
Learning curves are plots used to show a model's performance as the training set size
increases. Another way it can be used is to show the model's performance over a defined
period of time. We typically used them to diagnose algorithms that learn incrementally

DEPT. OF AIML , JNNCE 63

MACHINE LEARNING STUDY MATERIAL,

from data. It works by evaluating a model on the training and validation datasets, then
plotting the measured performance.
Finding the right degree of a polynomial is a challenge and learning curves help in
resolving it. Learning curves are the plots of training and validation error as a function of
the training iteration.

#Python code to illustrate the use of Learning curves with Linear Regression
from sklearn.model_selection import learning_curve
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
tsize,tscore,vscore=learning_curve(LinearRegression(),x,y,
 train_sizes=np.linspace(0.01,1,40),
 cv=5,scoring="neg_root_mean_squared_error")
trainerr=-tscore.mean(axis=1)
validerr=-vscore.mean(axis=1)
import matplotlib.pyplot as plt
plt.plot(tsize,trainerr)
plt.plot(tsize,validerr)
plt.legend(["train","valid"])
plt.show()
#Python code to illustrate the use of Learning curves with Polynomial Regression
from sklearn.pipeline import make_pipeline
pr=make_pipeline(PolynomialFeatures(degree=2,include_bias=False),
 LinearRegression())
tsize,tscore,vscore=learning_curve(pr,x,y,
 train_sizes=np.linspace(0.01,1,40),
 cv=5,scoring="neg_root_mean_squared_error")
trainerr=-tscore.mean(axis=1)
validerr=-vscore.mean(axis=1)
import matplotlib.pyplot as plt
plt.plot(tsize,trainerr)
plt.plot(tsize,validerr)
plt.legend(["train","valid"])
plt.show()

Regularized Linear Models
Regularization is one of the most important concepts of machine learning. It is a
technique to prevent the model from overfitting by adding extra information to it.
Regularization works by adding a penalty or complexity term to the complex mode
There are three types of regularization techniques, which are given below:

o Ridge Regression
o Lasso Regression
o ElasticNet Regression

Ridge Regression

o Ridge regression is one of the types of linear regression in which a small amount
of bias is introduced so that we can get better long-term predictions.

DEPT. OF AIML , JNNCE 64

MACHINE LEARNING STUDY MATERIAL,

o Ridge regression is a regularization technique, which is used to reduce the
complexity of the model. It is also called as L2 regularization.

o In this technique, the cost function is altered by adding the penalty term to it. The
amount of bias added to the model is called Ridge Regression penalty. We can
calculate it by multiplying with the lambda to the squared weight of each
individual feature.

o The equation for the cost function in ridge regression will be:

#Python code for Ridge Regression
from sklearn.linear_model import Ridge
ridge_reg = Ridge(alpha=1)
ridge_reg.fit(X, y)
OR
sgd_reg = SGDRegressor(penalty="l2")
Performance of Ridge regression for Linear and Non-linear cases:

Lasso Regression

o Lasso regression is another regularization technique to reduce the complexity of
the model. It stands for Least Absolute and Selection Operator.

o It is similar to the Ridge Regression except that the penalty term contains only the
absolute weights instead of a square of weights.

o Since it takes absolute values, hence, it can shrink the slope to 0, whereas Ridge
Regression can only shrink it near to 0.

DEPT. OF AIML , JNNCE 65

MACHINE LEARNING STUDY MATERIAL,

o It is also called as L1 regularization. The equation for the cost function of Lasso
regression will be:

#Python code for Lasso Regression
from sklearn.linear_model import Lasso
lasso_reg = Lasso(alpha=0.1)
lasso_reg.fit(X, y)
Performance of Lasso Regression

Elastic Net Regression
Elastic Net Regression is a powerful machine learning algorithm that combines the
features of both Lasso and Ridge Regression. It is a regularized regression technique that
is used to deal with the problems of multicollinearity and overfitting, which are common
in high-dimensional datasets. This algorithm works by adding a penalty term to the
standard least-squares objective function
Cost function of Elastic net regression:

#Python code for Elastic net regression:
from sklearn.linear_model import ElasticNet
el_reg = ElasticNet(alpha=0.1,l1_ratio=0.5)
el_reg.fit(X, y)

DEPT. OF AIML , JNNCE 66

MACHINE LEARNING STUDY MATERIAL,

Regularization by Early Stopping
In Regularization by Early Stopping, we stop training the model when the performance
on the validation set is getting worse- increasing loss decreasing accuracy, or poorer
scores of the scoring metric. By plotting the error on the training dataset and the
validation dataset together, both the errors decrease with a number of iterations until
the point where the model starts to overfit. After this point, the training error still
decreases but the validation error increases. So, even if training is continued after this
point, early stopping essentially returns the set of parameters that were used at this
point and so is equivalent to stopping training at that point. So, the final parameters
returned will enable the model to have low variance and better generalization. The
model at the time the training is stopped will have a better generalization performance
than the model with the least training errors.
The graph depicting the mechanism of early stopping:

Early stopping can be best used to prevent overfitting of the model, and saving
resources. It would give best results if taken care of few things like – parameter tuning,
preventing the model from overfitting, and ensuring that the model learns enough from
the data.

Logistic Regression
Logistic regression is a supervised machine learning algorithm used for classification
tasks where the goal is to predict the probability that an instance belongs to a given
class or not. Logistic regression is used for binary classification where we use sigmoid
function, that takes input as independent variables and produces a probability value
between 0 and 1. Logistic regression predicts the output of a categorical dependent
variable. Therefore, the outcome must be a categorical or discrete value. It can be either
Yes or No, 0 or 1, true or False, etc. but instead of giving the exact value as 0 and 1, it
gives the probabilistic values which lie between 0 and 1. In Logistic regression, instead
of fitting a regression line, we fit an “S” shaped logistic function, which predicts two
maximum values (0 or 1).
Estimating probabilities in Logistic Regression:

https://www.geeksforgeeks.org/regularization-in-machine-learning/
https://www.geeksforgeeks.org/getting-started-with-classification/
https://www.geeksforgeeks.org/derivative-of-the-sigmoid-function/
https://www.geeksforgeeks.org/derivative-of-the-sigmoid-function/

DEPT. OF AIML , JNNCE 67

MACHINE LEARNING STUDY MATERIAL,

Cost function of a single training instance of Logistic Regression

Logistic Regression cost function (log loss)

Decision Boundaries
The fundamental application of logistic regression is to determine a decision boundary for
a binary classification problem. Although the baseline is to identify a binary decision
boundary, the approach can be very well applied for scenarios with multiple classification
classes or multi-class classification.

#Python code to compute decision boundary for iris dataset
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
iris=load_iris(as_frame=True)
x=iris.data[['petal width (cm)']].values
y=iris.target_names[iris.target]=="virginica"
xtrain,xtest,ytrain,ytest=train_test_split(x,y,test_size=0.30)
lr=LogisticRegression()
lr.fit(xtrain,ytrain)
xnew=np.linspace(0,3,1000).reshape(-1,1)
yp=lr.predict_proba(xnew)
decisionboundary=xnew[yp[:,1]>=0.5][0,0]
print(decisionboundary)

Softmax regression
Softmax regression (or multinomial logistic regression) is a generalization of logistic
regression to the case where we want to handle multiple classes in the target column.
Softmax score for class k

DEPT. OF AIML , JNNCE 68

MACHINE LEARNING STUDY MATERIAL,

Softmax function

Softmax Regression classifier prediction

The argmax operator returns the value of a variable that maximizes a function.
Cross entropy is frequently used to measure how well a set of estimated class
probabilities match the target classes
Cross entropy cost function

DEPT. OF AIML , JNNCE 69

MACHINE LEARNING STUDY MATERIAL,

MODULE IV:

Decision Trees
A decision tree is a flowchart-like structure used to make decisions or predictions. It consists
of nodes representing decisions or tests on attributes, branches representing the outcome of
these decisions, and leaf nodes representing final outcomes or predictions. Each internal
node corresponds to a test on an attribute, each branch corresponds to the result of the test,
and each leaf node corresponds to a class label or a continuous value. Decision trees are
versatile ML algorithms used for classification, regression and multi-output classification. Also
suitable for any complex datasets.

Training and visualizing a decision tree
#Python code to construct a decision tree classifier for Iris dataset
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
iris=load_iris(as_frame=True)
x=iris.data[["petal length (cm)","petal width (cm)"]].values
y=iris.target
treeclf=DecisionTreeClassifier(max_depth=2,criterion="entropy")
treeclf.fit(x,y)

#Creating a graphics file for decision tree
from sklearn.tree import export_graphviz
export_graphviz(
 treeclf,
 out_file="o.dot",
 feature_names=["petal length (cm)","petal width (cm)"],
 class_names=iris.target_names,
 rounded=True,
 filled=True
)

from graphviz import Source
Source.from_file("o.dot")

#Visualization result of a Decision tree

DEPT. OF AIML , JNNCE 70

MACHINE LEARNING STUDY MATERIAL,

#Prediction result of decision tree
❑ 𝑻𝒓𝒂𝒗𝒆𝒓𝒔𝒆 𝒕𝒉𝒆 𝒕𝒓𝒆𝒆 𝒕𝒐 𝒇𝒊𝒏𝒅 𝒍𝒆𝒂𝒇 𝒏𝒐𝒅𝒆 𝒊𝒏𝒔𝒕𝒂𝒏𝒄𝒆
❑ Return ratio of training instances of class k in this node

treeclf.predict_proba([[5,1.5]]).round(3

Gini Impurity
The equation for computing Gini Impurity is:

𝑮𝒊 = 𝟏 −∑𝒑𝒊,𝒌
𝟐

𝒏

𝒌=𝟏

Where n-number of classes,
A node’s gini attribute measures its Gini impurity. A node is pure if all training instances is
pure and Gini impurity is 0.
Eg:
For the root node,

Gini impurity=1-[(
50

150
)2 + (

50

150
)2 + (

50

150
)2]

 =1-[1/9+1/9+1/9]=1-1/3=2/3==0.6667

DEPT. OF AIML , JNNCE 71

MACHINE LEARNING STUDY MATERIAL,

Decision tree boundaries

The thick vertical line represents the decision boundary of the root node (depth 0): petal
length = 2.45 cm. Since the left area is pure (only Iris-Setosa), it cannot be split any further.
However, the right area is impure, so the depth-1 right node splits it at petal width = 1.75 cm
(represented by the dashed line). Since max_depth was set to 2, the Decision Tree stops right
there. However, if you set max_depth to 3, then the two depth-2 nodes would each add
another decision boundary (represented by the dotted lines

Whitebox and Blackbox Machine Learning models
A white box machine learning model (White Box) is one that allows humans to easily interpret
how it was able to produce its output and draw its conclusions, thereby giving us insight into
the algorithm’s inner workings. White boxes are transparent in terms of:

• How they behave
• How they process data
• Which variables they give weight to
• How they generate their predictions

Examples of such models include linear trees, decision trees, and regression trees.

Black box machine learning models (Black Boxes), on the other hand, rank higher on
innovation and accuracy, but lower on transparency and interpretability. Black Boxes produce
output based on your input data set, but do not – and cannot – clarify how they came to those
conclusions. So, while a user can observe the input variable and the output variable,
everything in between related to the calculation and the process is not available. Even if it
were, humans would not be able to understand it.
Black Boxes tend to model extremely complex scenarios with deep and non-linear
interactions between the data. Some examples include:

• Deep-learning models

DEPT. OF AIML , JNNCE 72

MACHINE LEARNING STUDY MATERIAL,

• Boosting models
• Random forest models

CART Training algorithm
CART(Classification And Regression Trees) is a variation of the decision tree algorithm. It can
handle both classification and regression tasks. Scikit-Learn uses the Classification And
Regression Tree (CART) algorithm to train Decision Trees (also called “growing” trees)
Classification and Regression Trees (CART) is a decision tree algorithm that is used for both
classification and regression tasks. It is a supervised learning algorithm that learns from
labelled data to predict unseen data.

• Tree structure: CART builds a tree-like structure consisting of nodes and branches. The
nodes represent different decision points, and the branches represent the possible
outcomes of those decisions. The leaf nodes in the tree contain a predicted class label
or value for the target variable.

• Splitting criteria: CART uses a greedy approach to split the data at each node. It
evaluates all possible splits and selects the one that best reduces the impurity of the
resulting subsets. For classification tasks, CART uses Gini impurity as the splitting
criterion. The lower the Gini impurity, the more pure the subset is. For regression
tasks, CART uses residual reduction as the splitting criterion. The lower the residual
reduction, the better the fit of the model to the data.

• Pruning: To prevent overfitting of the data, pruning is a technique used to remove the
nodes that contribute little to the model accuracy. Cost complexity pruning and
information gain pruning are two popular pruning techniques. Cost complexity
pruning involves calculating the cost of each node and removing nodes that have a
negative cost. Information gain pruning involves calculating the information gain of
each node and removing nodes that have a low information gain.

CART algorithm Splits training dataset into two subsets using single feature k and threshold
tk. It searches for pair (t,tk) that produces purest subsets weighted by their size. CART cost
function for classification:

Entropy
• The word “entropy,” is hails from physics, and refers to an indicator of the disorder.

The expected volume of “information,” “surprise,” or “uncertainty” associated with a

https://www.geeksforgeeks.org/ml-classification-vs-regression/
https://www.geeksforgeeks.org/learning-model-building-scikit-learn-python-machine-learning-library/
https://www.geeksforgeeks.org/decision-tree/

DEPT. OF AIML , JNNCE 73

MACHINE LEARNING STUDY MATERIAL,

randomly chosen variable’s potential outcomes is characterized as the entropy of the
variable in information theory.

• Entropy is a quantifiable and measurable physical attribute and a scientific notion that
is frequently associated with a circumstance of disorder, unpredictability, or
uncertainty.

• From classical thermodynamics, where it was originally identified, through the
macroscopic portrayal of existence in statistical physics, to the principles of
information theory, the terminology, and notion are widely used in a variety of fields
of study

• Entropy is defined as the randomness or measuring the disorder of the information
being processed in Machine Learning. Further, in other words, we can say
that entropy is the machine learning metric that measures the unpredictability or
impurity in the system.

Formula to compute Entropy:

𝑯𝒊 = −∑𝒑𝒊,𝒌𝒍𝒐𝒈𝟐

𝒏

𝒌=𝟏

𝒑𝒊,𝒌

Entropy vs Gini Impurity
Gini Impurity Entropy

It is the probability of misclassifying a
randomly chosen element in a set.

While entropy measures the amount of
uncertainty or randomness in a set.

The range of the Gini index is [0, 1], where 0
indicates perfect purity and 1 indicates
maximum impurity.

The range of entropy is [0, log(c)], where c
is the number of classes.

Gini index is a linear measure. Entropy is a logarithmic measure.

It can be interpreted as the expected error
rate in a classifier.

It can be interpreted as the average amount
of information needed to specify the class
of an instance.

It is sensitive to the distribution of classes in
a set.

It is sensitive to the number of classes

Regularization hyperparameters of Decision tree

DEPT. OF AIML , JNNCE 74

MACHINE LEARNING STUDY MATERIAL,

The few other hyperparameters that would restrict the structure of the decision tree are:
1. min_samples_split – Minimum number of samples a node must possess before

splitting.
2. min_samples_leaf – Minimum number of samples a leaf node must possess.
3. min_weight_fraction_leaf – Minimum fraction of the sum total of weights required to

be at a leaf node.
4. max_leaf_nodes – Maximum number of leaf nodes a decision tree can have.
5. max_features – Maximum number of features that are taken into the account for

splitting each node.

Regression using Decision Trees
import numpy as np
from sklearn.tree import DecisionTreeRegressor
x=np.random.rand(200,1)-0.5
y=x**2+0.025*np.random.randn(200,1)
tr=DecisionTreeRegressor(max_depth=2)
tr.fit(x,y)

from sklearn.tree import export_graphviz
export_graphviz(
 tr,
 out_file="o.dot",
 feature_names=['X'],
 class_names=y,
 rounded=True,
 filled=True
)

from graphviz import Source
Source.from_file("o.dot")

Output:

DEPT. OF AIML , JNNCE 75

MACHINE LEARNING STUDY MATERIAL,

CART Cost function for regression:

Parametric and Non-parametric machine learning models
Machine learning models are widely classified into two types: parametric and nonparametric
models. Models of the first category make specific hypotheses about the relationship
between input and output data. These assumptions concern a fixed number of parameters
and variables that impact the model’s result. Furthermore, these assumptions are associated
with a set of parameters that must be learned during the training process. Some examples of
parametric models in neural networks include linear or polynomial regression, which are
straightforward models that imply that the input and output have a linear or polynomial
relation respectively.

The second category includes non-parametric models. These models don’t need to
make assumptions about the relations between the input and output to generate an outcome
and also don’t require a certain number of parameters to be set and learned. Studies have
shown that non-parametric perform better on large datasets and are more flexible. Common
non-parametric algorithms are the random forests or decision trees that split the input into a
smaller space based on the data features, generating the prediction based on the class.

Ensemble learning:
Ensemble learning is a machine learning technique that enhances accuracy and resilience in
forecasting by merging predictions from multiple models. It aims to mitigate errors or biases
that may exist in individual models by leveraging the collective intelligence of the ensemble.

The underlying concept behind ensemble learning is to combine the outputs of diverse
models to create a more precise prediction. By considering multiple perspectives and utilizing
the strengths of different models, ensemble learning improves the overall performance of the
learning system. This approach not only enhances accuracy but also provides resilience
against uncertainties in the data. By effectively merging predictions from multiple models,
ensemble learning has proven to be a powerful tool in various domains, offering more robust
and reliable forecasts.

Eg:

https://www.baeldung.com/cs/ml-fundamentals
https://www.baeldung.com/cs/ai-convolutional-neural-networks
https://www.baeldung.com/cs/linear-vs-logistic-regression
https://www.baeldung.com/cs/regularization-parameter-linear-regression
https://www.baeldung.com/cs/decision-trees-vs-random-forests

DEPT. OF AIML , JNNCE 76

MACHINE LEARNING STUDY MATERIAL,

Aggregating the predictions of group of predictors (regressors/classifiers) is called ensemble
learning.

Voting Classifiers
A voting classifier is a machine learning model that gains experience by training on a collection
of several models and forecasts an output (class) based on the class with the highest
likelihood of becoming the output. To forecast the output class based on the largest majority
of votes, it averages the results of each classifier provided into the voting classifier. The
concept is to build a single model that learns from various models and predicts output based
on their aggregate majority of votes for each output class, rather than building separate
specialized models and determining the accuracy for each of them.
There are primarily two different types of voting classifiers:

• Hard Voting: In hard voting, the predicted output class is a class with the highest
majority of votes. For example, let’s say classifiers predicted the output classes as (Cat,
Dog, Dog). As the classifiers predicted class “dog” a maximum number of times, we
will proceed with Dog as our final prediction.

• Soft Voting: In this, the average probabilities of the classes determine which one will
be the final prediction. For example, let’s say the probabilities of the class being a
“dog” is (0.30, 0.47, 0.53) and a “cat” is (0.20, 0.32, 0.40). So, the average for a class
dog is 0.4333, and the cat is 0.3067, from this, we can confirm our final prediction to
be a dog as it has the highest average probability.

Eg:

https://www.geeksforgeeks.org/ml-voting-classifier-using-sklearn/
https://www.geeksforgeeks.org/ml-voting-classifier-using-sklearn/

DEPT. OF AIML , JNNCE 77

MACHINE LEARNING STUDY MATERIAL,

#Python code to demonstrate Hard voting classifiers
from sklearn.datasets import make_moons
from sklearn.ensemble import RandomForestClassifier, VotingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
x,y=make_moons(n_samples=500, noise=0.30)
xtrain,xtest,ytrain,ytest=train_test_split(x,y)
vcl=VotingClassifier(
 estimators=[
 ('lr',LogisticRegression()),
 ('rf',RandomForestClassifier()),
 ('svc',SVC()),
]
)
vcl.fit(xtrain,ytrain)
for name,clf in vcl.named_estimators_.items():
 print(name,clf.score(xtest,ytest))
vcl.score(xtest,ytest)

#Python code for softvoting classifiers

DEPT. OF AIML , JNNCE 78

MACHINE LEARNING STUDY MATERIAL,

vcl.voting="soft"
vcl.named_estimators["svc"].probability=True
vcl.fit(xtrain,ytrain)
vcl.score(xtest,ytest)

Bagging and Pasting
One way to get a diverse set of classifiers for ensemble learning is to use very different training
algorithms. Another approach is to use the same training algorithm for every predictor and
train them on different random subsets of the training set. When sampling is performed with
replacement, this method is called bagging (short for bootstrap aggregating). When sampling
is performed without replacement, it is called pasting.

Both bagging and pasting allow training instances to be sampled several times across
multiple predictors, but only bagging allows training instances to be sampled several times
for the same predictor.

Once all predictors are trained, the ensemble can make a prediction for a new instance
by simply aggregating the predictions of all predictors. The aggregation function is typically
the statistical mode for classification or the average for the regression. Predictors can all be
trained in parallel, via different CPU cores. Similarly, predictions can be made in parallel. This
is one of the reasons bagging and pasting scale very well.

Eg:

#Python code for Bagging/Pasting
from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier
bag_clf = BaggingClassifier(base_estimator=DecisionTreeClassifier(), n_estimators=500,
max_samples=100, bootstrap=True, n_jobs=-1)

DEPT. OF AIML , JNNCE 79

MACHINE LEARNING STUDY MATERIAL,

Bootstrapping introduces a bit more diversity in the subsets that each predictor is trained on,
so bagging ends up with a slightly higher bias than pasting. But the extra diversity also means
that the predictors end up being less correlated, so the ensemble’s variance is reduced.
Overall, bagging often results in better models.

Out-of-Bag Evaluation
With bagging, some instances may be sampled several times for any given predictor, while
others may not be sampled at all. By default, BaggingClassifier samples m training instances
with replacement (bootstrap=True), where m is the size of the training set. This means only
about 63% of the training instances are sampled on average for each predictor. The remaining
37% of the training instances that are not sampled are called out-of-bag (oob) instances.
Since a predictor never sees these instances during training, it can be evaluated on these
instances, without the need for a separate validation set. We can evaluate the ensemble itself
by averaging out the out-of-bag evaluations for each predictor.
In Scikit-Learn, we can set oob_score=True when creating a BaggingClassifier to request an
automatic oob evaluation. The resulting evaluation score is available through
the oob_score_ variable.
#Python code for OOB Evaluation
bag_clf = BaggingClassifier(base_estimator=DecisionTreeClassifier(), n_estimators=500,
max_samples=100, bootstrap=True, n_jobs=-1, oob_score=True)
bag_clf.fit(X, y) print(bag_clf.oob_score_)

Random Patches and Random Subspaces
The BaggingClassifer class supports sampling the features as well. Sampling features is
controlled by two hyperparameters: max_features and bootstrap_features. They work the
same way as max_samples and bootstrap, but for feature sampling instead. Thus, each
predictor will be trained on a random subset of the input features.

This is very useful when we are dealing with high-dimensional inputs. Sampling both
training instances and features is called the Random Patches method. Keeping all the training
instances but sampling features is called the Random Subspaces method.

Bias and variance in Machine Learning
Bias is simply defined as the inability of the model because of that there is some difference or
error occurring between the model’s predicted value and the actual value. These differences
between actual or expected values and the predicted values are known as error or bias error
or error due to bias.

Variance is the measure of spread in data from its mean position. In machine learning
variance is the amount by which the performance of a predictive model changes when it is
trained on different subsets of the training data. More specifically, variance is the variability
of the model that how much it is sensitive to another subset of the training dataset. i.e. how
much it can adjust on the new subset of the training dataset.
Different Combinations of Bias-Variance
There can be four combinations between bias and variance.

https://www.geeksforgeeks.org/mathematics-mean-variance-and-standard-deviation/

DEPT. OF AIML , JNNCE 80

MACHINE LEARNING STUDY MATERIAL,

• High Bias, Low Variance: A model with high bias and low variance is said to be
underfitting.

• High Variance, Low Bias: A model with high variance and low bias is said to be
overfitting.

• High-Bias, High-Variance: A model has both high bias and high variance, which means
that the model is not able to capture the underlying patterns in the data (high bias)
and is also too sensitive to changes in the training data (high variance). As a result, the
model will produce inconsistent and inaccurate predictions on average.

• Low Bias, Low Variance: A model that has low bias and low variance means that the
model is able to capture the underlying patterns in the data (low bias) and is not too
sensitive to changes in the training data (low variance). This is the ideal scenario for a
machine learning model, as it is able to generalize well to new, unseen data and
produce consistent and accurate predictions. But in practice, it’s not possible.

Random Forests
Random Forest algorithm is a powerful tree learning technique in Machine Learning. It works
by creating a number of Decision Trees during the training phase. Each tree is constructed
using a random subset of the data set to measure a random subset of features in each
partition. This randomness introduces variability among individual trees, reducing the risk
of overfitting and improving overall prediction performance.

In prediction, the algorithm aggregates the results of all trees, either by voting (for
classification tasks) or by averaging (for regression tasks) This collaborative decision-making
process, supported by multiple trees with their insights, provides an example stable and
precise results. Random forests are widely used for classification and regression functions,
which are known for their ability to handle complex data, reduce overfitting, and provide
reliable forecasts in different environments.
Random forest is an ensemble of Decision trees, trained with bagging method. The value of
max_samples is set to 1.0. There is no need of pipelines in building classifiers/regressors. For
splitting node, uses best feature among random subset of features.

#Python code to demonstrate Random Forest classifier
from sklearn.ensemble import RandomForestClassifier
rcl=RandomForestClassifier(n_estimators=1000,
 max_leaf_nodes=16)
rcl.fit(xtrain,ytrain)
rcl.score(xtest,ytest)

Extra Tree classifier
Extremely Randomized Trees Classifier(Extra Trees Classifier) is a type of ensemble learning
technique which aggregates the results of multiple de-correlated decision trees collected in a
“forest” to output it’s classification result. In concept, it is very similar to a Random Forest
Classifier and only differs from it in the manner of construction of the decision trees in the
forest. Each Decision Tree in the Extra Trees Forest is constructed from the original training
sample. Then, at each test node, Each tree is provided with a random sample of k features
from the feature-set from which each decision tree must select the best feature to split the

https://www.geeksforgeeks.org/ml-machine-learning/
https://www.geeksforgeeks.org/decision-tree/
https://www.geeksforgeeks.org/underfitting-and-overfitting-in-machine-learning/

DEPT. OF AIML , JNNCE 81

MACHINE LEARNING STUDY MATERIAL,

data based on some mathematical criteria (typically the Gini Index). This random sample of
features leads to the creation of multiple de-correlated decision trees.

Feature Importance
Features in machine learning, also known as variables or attributes, are individual measurable
properties or characteristics of the phenomena being observed. They serve as the input to
the model, and their quality and quantity can greatly influence the accuracy and efficiency of
the model. Several techniques can be employed to calculate feature importance in Random
Forests, each offering unique insights:

• Built-in Feature Importance: This method utilizes the model’s internal calculations to
measure feature importance, such as Gini importance and mean decrease in
accuracy. Essentially, this method measures how much the impurity (or randomness)
within a node of a decision tree decreases when a specific feature is used to split the
data.

• Permutation feature importance: Permutation importance assesses the significance
of each feature independently. By evaluating the impact of individual feature
permutations on predictions, it calculates importance.

• SHAP (SHapley Additive exPlanations) Values: SHAP values delve deeper by
explaining the contribution of each feature to individual predictions. This method
offers a comprehensive understanding of feature importance across various data
points.

#Python code to compute Feature Importance
from sklearn.datasets import load_iris
iris=load_iris(as_frame=True)
rcl=RandomForestClassifier(n_estimators=500)
rcl.fit(iris.data,iris.target)
for score,name in zip(rcl.feature_importances_,iris.data.columns):
 print(name,round(score,2))

Boosting
Boosting is an ensemble modeling technique that attempts to build a strong classifier from
the number of weak classifiers. It is done by building a model by using weak models in series.
Firstly, a model is built from the training data. Then the second model is built which tries to
correct the errors present in the first model. This procedure is continued and models are
added until either the complete training data set is predicted correctly or the maximum
number of models are added.
Advantages of Boosting

• Improved Accuracy – Boosting can improve the accuracy of the model by combining
several weak models’ accuracies and averaging them for regression or voting over
them for classification to increase the accuracy of the final model.

• Robustness to Overfitting – Boosting can reduce the risk of overfitting by reweighting
the inputs that are classified wrongly.

• Better handling of imbalanced data – Boosting can handle the imbalance data by
focusing more on the data points that are misclassified

DEPT. OF AIML , JNNCE 82

MACHINE LEARNING STUDY MATERIAL,

• Better Interpretability – Boosting can increase the interpretability of the model by
breaking the model decision process into multiple processes.

Boosting methods
Adaboost – AdaBoost is a boosting algorithm that also works on the principle of the stagewise
addition method where multiple weak learners are used for getting strong learners. The value
of the alpha parameter, in this case, will be indirectly proportional to the error of the weak
learner, Unlike Gradient Boosting in XGBoost, the alpha parameter calculated is related to the
errors of the weak learner, here the value of the alpha parameter will be indirectly
proportional to the error of the weak learner.

AdaBoost sequential training with instance weight updates

#Python code of Adaboost classifier
from sklearn.ensemble import AdaBoostClassifier
acl=AdaBoostClassifier(DecisionTreeClassifier(max_depth=1),
 n_estimators=30,
 learning_rate=0.5)
acl.fit(xtrain,ytrain)

Gradient Boosting – It is a boosting technique that builds a final model from the sum of
several weak learning algorithms that were trained on the same dataset. It operates on the
idea of stagewise addition. The first weak learner in the gradient boosting algorithm will not
be trained on the dataset; instead, it will simply return the mean of the relevant column. The
residual for the first weak learner algorithm’s output will then be calculated and used as the
output column or target column for the next weak learning algorithm that will be trained. The
second weak learner will be trained using the same methodology, and the residuals will be
computed and utilized as an output column once more for the third weak learner, and so on
until we achieve zero residuals. The dataset for gradient boosting must be in the form of
numerical or categorical data, and the loss function used to generate the residuals must be
differential at all times.

DEPT. OF AIML , JNNCE 83

MACHINE LEARNING STUDY MATERIAL,

#Python code for Gradient Boosting
from sklearn.ensemble import GradientBoostingRegressor
gbrt = GradientBoostingRegressor(max_depth=2, n_estimators=3, learning_rate=1.0)
gbrt.fit(X, y)

Histogram based Gradient Boosting
Histogram Gradient Boosting (HGB) is an optimized version of Gradient Boosting that
enhances speed and efficiency. Here’s a detailed breakdown of how it works:
Step-by-Step Working of Histogram Gradient Boosting
Feature Binning:

• Continuous features are divided into discrete bins (histograms). For example, a feature
with continuous values might be divided into 256 bins.

• This binning process reduces the number of unique feature values, which simplifies
and accelerates computations.

Gradient Calculation:
• Compute gradients based on the binned features. The gradient indicates how much

and in which direction we need to adjust predictions to reduce the error.
Histogram Construction:

• For each feature, build a histogram of gradient values. Each bin in the histogram
represents the sum of gradients for data points that fall into that bin.

• This step transforms the gradient computation into a simpler histogram update
process.

Tree Building:
• Decision trees are constructed using these histograms. The algorithm evaluates split

points by considering the bins rather than individual data points, which speeds up
the process.

• Trees are added iteratively, each aiming to reduce the residual errors of the current
ensemble model.

Model Update:
• After adding a new tree, the model is updated, and the process repeats. Each iteration

seeks to improve the model by reducing the errors incrementally.

Stacking
Stacking is a way to ensemble multiple classifications or regression model. There are many
ways to ensemble models, the widely known models are Bagging or Boosting. Bagging allows
multiple similar models with high variance are averaged to decrease variance. Boosting builds
multiple incremental models to decrease the bias, while keeping variance small.

Stacking (sometimes called Stacked Generalization) is a different paradigm. The point
of stacking is to explore a space of different models for the same problem. The idea is that
you can attack a learning problem with different types of models which are capable to learn
some part of the problem, but not the whole space of the problem. So, you can build multiple
different learners and you use them to build an intermediate prediction, one prediction for
each learned model. Then you add a new model which learns from the intermediate
predictions the same target.

DEPT. OF AIML , JNNCE 84

MACHINE LEARNING STUDY MATERIAL,

This final model is said to be stacked on the top of the others, hence the name. Thus,
you might improve your overall performance, and often you end up with a model which is
better than any individual intermediate model. Notice however, that it does not give you any
guarantee, as is often the case with any machine learning technique.
Eg:

Aggregating predictions using a blending predictor

To train the blender, a common approach is to use a hold-out set. First, the training set is split
in two subsets. The first subset is used to train the predictors in the first layer

The blender is trained on this new training set, so it learns to predict the target value given
the first layer’s predictions.

DEPT. OF AIML , JNNCE 85

MACHINE LEARNING STUDY MATERIAL,

It is actually possible to train several different blenders this way (e.g., one using Lin‐ ear
Regression, another using Random Forest Regression, and so on): we get a whole layer of
blenders. The trick is to split the training set into three subsets: the first one is used to train
the first layer, the second one is used to create the training set used to train the second layer
(using predictions made by the predictors of the first layer), and the third one is used to create
the training set to train the third layer (using pre‐ dictions made by the predictors of the
second layer)

Predictions in a multilayer stacking ensemble

DEPT. OF AIML , JNNCE 86

MACHINE LEARNING STUDY MATERIAL,

MODULE V:

Bayesian Learning
Bayesian Machine Learning (BML) encompasses a suite of techniques and algorithms that
leverage Bayesian principles to model uncertainty in data. These methods are not just
theoretical constructs; they are practical tools that have transformed the way machines learn
from data.

Bayesian Learning Model:

Features of Bayesian learning
❖ Each observed training example can incrementally decrease or increase the estimated

probability that a hypothesis is correct
❖ Prior knowledge can be combined with observed data to determine the final

probability of a hypothesis
❖ Accommodate hypothesis that make probabilistic predictions
❖ Classify based on combining predictions of multiple hypothesis
❖ Provides optimal decision making

Bayes theorem in Machine Learning
Bayes’ theorem is fundamental in machine learning, especially in the context of Bayesian
inference. It provides a way to update our beliefs about a hypothesis based on new evidence.
Formula:

Where,
P(h) is prior probability of hypothesis h
P(D) is prior probability of training data D
P(h|D) is posterior probability of h given D
P(D|h) is posterior probability of D given h

DEPT. OF AIML , JNNCE 87

MACHINE LEARNING STUDY MATERIAL,

P(h|D) increases with increase in P(D|h) and P(h)
P(h|D) decreases with increase in P(D)

MAP Hypothesis
Maximum a Posteriori (MAP) estimation is a statistical technique used to estimate
the probability distribution of a dataset by incorporating prior knowledge or experience. It is
an extension of the maximum likelihood estimation (MLE) method, which estimates
parameters of a statistical model by maximizing the likelihood function, without considering
any prior distribution of the parameters.

In contrast, MAP estimation takes into account the prior distribution of the
parameters, which reflects any existing beliefs or information about the parameters before
observing the current data. This prior knowledge is combined with the likelihood of the
observed data to produce the posterior distribution, which represents the updated beliefs
about the parameters after taking the data into account.

MAP working:

Second step comes from the application of Bayes theorem and third step is the consequence
of independence of P(D) on h.

Maximum likelihood hypothesis
In machine learning, the likelihood is a measure of the data observations up to which it can
tell us the results or the target variables value for particular data points. In simple words, as
the name suggests, the likelihood is a function that tells us how likely the specific data point
suits the existing data distribution. maximum likelihood represents that we are maximizing
the likelihood function, called the Maximization of the Likelihood Function. It is given by:

Problem:

https://deepai.org/machine-learning-glossary-and-terms/estimator
https://deepai.org/machine-learning-glossary-and-terms/probability-distribution

DEPT. OF AIML , JNNCE 88

MACHINE LEARNING STUDY MATERIAL,

Solution:
As per Bayes theorem :

P(A|B)=
P(B|A).P(A)

𝑃(𝐵)
 =

2

4
∗
4

7
3

7

 =2/3

P(B|A)=
P(A|B).P(B)

𝑃(𝐴)
 =

2

3
∗
3

7
4

7

 =2/4

Hence Bayes theorem is verified as correct for this example

Problem:

Given,
we now observe a new patient for whom the lab test returns a positive result. Should we
diagnose the patient as having cancer or not?
Solution:
P(cancer|⨁)= P(⨁|cancer) ∗ P(cancer)
 =0.98*0.008=0.0078
P(¬cancer|⨁)= P(⨁|¬cancer) ∗ P(¬cancer)
 =0.03*0.992=0.0298
Normalize the probabilities so that sum of probabilities=1

P(cancer|⨁)=
0.0078

0.0078+0.0298
=0.21

P(¬cancer|⨁)=
0.0298

0.0078+0.0298
=0.79

Hence, it should be diagonized as cancer is negative despite of a positive lab report.

DEPT. OF AIML , JNNCE 89

MACHINE LEARNING STUDY MATERIAL,

Brute for MAP learning algorithm consumes significant computational resources as all the
hypothesis in the hypothesis set is to be checked.
Assumptions of Brute-Force MAP:
1. The training data D is noise free
2. The target concept c is contained in the hypothesis space H
3. We have no a priori reason to believe that any hypothesis is more probable than any other.

Derivations:

DEPT. OF AIML , JNNCE 90

MACHINE LEARNING STUDY MATERIAL,

Maximum Likelihood and Least Squared Error hypothesis
Any learning algorithm that minimizes the squared error between the output hypothesis
predictions and the training data will output a maximum likelihood hypothesis
Consider:

It is assumed that noise distribution is normal.
Learning of a real valued function has an example graph as depicted below:

DEPT. OF AIML , JNNCE 91

MACHINE LEARNING STUDY MATERIAL,

Since continuous values are used, probability density function is used.

Derivation of hML:

Probability density is the product of probability of individual instances

The probability is computed as normal distribution

Applying log transformation:

Taking out independent term

DEPT. OF AIML , JNNCE 92

MACHINE LEARNING STUDY MATERIAL,

Maximum of negatives is same as minimum of positives

Taking out independent term:

Thus, Any learning algorithm that minimizes the squared error between the output
hypothesis predictions and the training data will output a maximum likelihood hypothesis

Maximum Likelihood for predicting probability (Discrete case)
Consider:

𝑵𝒆𝒆𝒅 𝒕𝒐 𝒇𝒊𝒏𝒅 𝒇′: 𝑿 → [𝟎, 𝟏]
𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝒕 𝒇′(𝒙) = 𝑷(𝒇(𝒙) = 𝟏)

Derivations:

Applying product theorem:

Apply for all m samples:

DEPT. OF AIML , JNNCE 93

MACHINE LEARNING STUDY MATERIAL,

Substitution:

Taking out independent term:

Taking log transformation

Minimum length description Principle
Minimum Description Length (MDL) is a model selection principle where the shortest
description of the data is the best model. MDL methods learn through a data compression
perspective and are sometimes described as mathematical applications of Occam's razor. The
MDL principle can be extended to other forms of inductive inference and learning, for
example to estimation and sequential prediction, without explicitly identifying a single model
of the data.

MDL applies in machine learning when algorithms (machines) generate descriptions.
Learning occurs when an algorithm generates a shorter description of the same data set.

Deriving MDL:

https://en.wikipedia.org/wiki/Model_selection
https://en.wikipedia.org/wiki/Occam%27s_razor

DEPT. OF AIML , JNNCE 94

MACHINE LEARNING STUDY MATERIAL,

Bayes optimal classifier
Bayes optimal classifier answers the question: what is the most probable classification of the
new instance given the training data.

Problem:

Apply Bayes optimal classifier and find what is the classification result

Solution:
Computing P(V)
P(⊕)=[P(⊕ |ℎ1).P(h1|D)+ P(⊕ |ℎ2).P(h2|D)+ P(⊕ |ℎ3).P(h3|D)]
 =[0.4+0+0]=0.4

P(⊖)=[P(⊖ |ℎ1).P(h1|D)+ P(⊖ |ℎ2).P(h2|D)+ P(⊖ |ℎ3).P(h3|D)]
 =[0+0.3+0.3]=0.6

DEPT. OF AIML , JNNCE 95

MACHINE LEARNING STUDY MATERIAL,

Hence, taking argmax, bayes optimal classifier results in negative class

Gibbs Algorithm:
1. Choose a hypothesis h from H at random, according to posterior probability

distribution over H
2. Use h to predict the classification of the next instance
3. Less computationally complex
4. misclassification error for the Gibbs algorithm is at most twice the expected error of

the Bayes optimal classifier

Naïve Bayes Classifier
Naive Bayes classifiers are a collection of classification algorithms based on Bayes’ Theorem.
It is not a single algorithm but a family of algorithms where all of them share a common
principle, i.e. every pair of features being classified is independent of each other.
Derivations:

Assumption : feature attributes are independent of each other

https://www.geeksforgeeks.org/bayes-theorem/

DEPT. OF AIML , JNNCE 96

MACHINE LEARNING STUDY MATERIAL,

Problem:
Given the dataset:

P(P1ayTennis = yes) = 9/14
P(P1ayTennis = no) =5/14
P(Wind = strong|PlayTennis = yes) =3/9
P(Wind = strong|PlayTennis = no) =3/5

Need of m-estimate:
Conditional probabilities can be estimated directly as relativ e frequencies:

However,

DEPT. OF AIML , JNNCE 97

MACHINE LEARNING STUDY MATERIAL,

Bayesian Belief Network
Bayesian belief network is key computer technology for dealing with probabilistic events
and to solve a problem which has uncertainty. We can define a Bayesian network as:
"A Bayesian network is a probabilistic graphical model which represents a set of variables
and their conditional dependencies using a directed acyclic graph."
It is also called a Bayes network, belief network, decision network, or Bayesian model.
Bayesian networks are probabilistic, because these networks are built from a probability
distribution, and also use probability theory for prediction and anomaly detection.

Real world applications are probabilistic in nature, and to represent the relationship
between multiple events, we need a Bayesian network. It can also be used in various tasks
including prediction, anomaly detection, diagnostics, automated insight, reasoning, time
series prediction, and decision making under uncertainty.

Bayesian Network can be used for building models from data and experts opinions, and
it consists of two parts:

o Directed Acyclic Graph
o Table of conditional probabilities.

The generalized form of Bayesian network that represents and solve decision problems
under uncertain knowledge is known as an Influence diagram.
A Bayesian network graph is made up of nodes and Arcs (directed links), where:

DEPT. OF AIML , JNNCE 98

MACHINE LEARNING STUDY MATERIAL,

o Each node corresponds to the random variables, and a variable can

be continuous or discrete.
o Arc or directed arrows represent the causal relationship or conditional

probabilities between random variables. These directed links or arrows connect
the pair of nodes in the graph.

The Bayesian network has mainly two components:
o Causal Component
o Actual numbers

Each node in the Bayesian network has condition probability
distribution P(Xi |Parent(Xi)), which determines the effect of the parent on that node.

Example:
Harry installed a new burglar alarm at his home to detect burglary. The alarm reliably
responds at detecting a burglary but also responds for minor earthquakes. Harry has two
neighbors David and Sophia, who have taken a responsibility to inform Harry at work
when they hear the alarm. David always calls Harry when he hears the alarm, but
sometimes he got confused with the phone ringing and calls at that time too. On the other
hand, Sophia likes to listen to high music, so sometimes she misses to hear the alarm.
Here we would like to compute the probability of Burglary Alarm. Calculate the
probability that alarm has sounded, but there is neither a burglary, nor an earthquake
occurred, and David and Sophia both called the Harry.
Solution:
List of all events occurring in this network:

o Burglary (B)
o Earthquake(E)
o Alarm(A)
o David Calls(D)
o Sophia calls(S)

P[D, S, A, B, E]= P[D | S, A, B, E]. P[S, A, B, E]
=P[D | S, A, B, E]. P[S | A, B, E]. P[A, B, E]

DEPT. OF AIML , JNNCE 99

MACHINE LEARNING STUDY MATERIAL,

= P [D| A]. P [S| A, B, E]. P[A, B, E]
= P[D | A]. P[S | A]. P[A| B, E]. P[B, E]
= P[D | A]. P[S | A]. P[A| B, E]. P[B |E]. P[E]

P(B= True) = 0.002, which is the probability of burglary.
P(B= False)= 0.998, which is the probability of no burglary.
P(E= True)= 0.001, which is the probability of a minor earthquake
P(E= False)= 0.999, Which is the probability that an earthquake not occurred.
We can provide the conditional probabilities as per the below tables:
The Conditional probability of Alarm A depends on Burglar and earthquake:

B E P(A= True) P(A= False)

True True 0.94 0.06

True False 0.95 0.04

False True 0.31 0.69

False False 0.001 0.999

Conditional probability table for David Calls:
The Conditional probability of David that he will call depends on the probability of Alarm.

A P(D= True) P(D= False)

DEPT. OF AIML , JNNCE 100

MACHINE LEARNING STUDY MATERIAL,

True 0.91 0.09

False 0.05 0.95

Conditional probability table for Sophia Calls:
The Conditional probability of Sophia that she calls is depending on its Parent Node
"Alarm."

A P(S= True) P(S= False)

True 0.75 0.25

False 0.02 0.98

From the formula of joint distribution, we can write the problem statement in the form of
probability distribution:
P(S, D, A, ¬B, ¬E) = P (S|A) *P (D|A)*P (A|¬B ^ ¬E) *P (¬B) *P (¬E).
= 0.75* 0.91* 0.001* 0.998*0.999
= 0.00068045.
Hence, a Bayesian network can answer any query about the domain by using Joint
distribution.

EM Algorithm in Machine Learning
The EM algorithm is considered a latent variable model to find the local maximum
likelihood parameters of a statistical model. The EM (Expectation-Maximization)
algorithm is one of the most commonly used terms in machine learning to obtain
maximum likelihood estimates of variables that are sometimes observable and
sometimes not. However, it is also applicable to unobserved data or sometimes called
latent. It has various real-world applications in statistics, including obtaining the mode of
the posterior marginal distribution of parameters in machine learning and data mining
applications.

The Expectation-Maximization (EM) algorithm is defined as the combination of
various unsupervised machine learning algorithms, which is used to determine the local
maximum likelihood estimates (MLE) or maximum a posteriori estimates (MAP) for
unobservable variables in statistical models. Further, it is a technique to find maximum
likelihood estimation when the latent variables are present. It is also referred to as
the latent variable model.

The EM algorithm is the combination of various unsupervised ML algorithms, such
as the k-means clustering algorithm. Being an iterative approach, it consists of two
modes. In the first mode, we estimate the missing or latent variables. Hence it is referred
to as the Expectation/estimation step (E-step). Further, the other mode is used to
optimize the parameters of the models so that it can explain the data more clearly. The
second mode is known as the maximization-step or M-step.

DEPT. OF AIML , JNNCE 101

MACHINE LEARNING STUDY MATERIAL,

o Expectation step (E - step): It involves the estimation (guess) of all missing values

in the dataset so that after completing this step, there should not be any missing
value.

o Maximization step (M - step): This step involves the use of estimated data in the
E-step and updating the parameters.

o Repeat E-step and M-step until the convergence of the values occurs.

The primary goal of the EM algorithm is to use the available observed data of the dataset
to estimate the missing data of the latent variables and then use that data to update the
values of the parameters in the M-step.

Steps in EM Algorithm
The EM algorithm is completed mainly in 4 steps, which include Initialization Step,
Expectation Step, Maximization Step, and convergence Step. These steps are explained
as follows:

Applications of EM algorithm
The primary aim of the EM algorithm is to estimate the missing data in the latent variables
through observed data in datasets. The EM algorithm or latent variable model has a broad
range of real-life applications in machine learning. These are as follows:

o The EM algorithm is applicable in data clustering in machine learning.
o It is often used in computer vision and NLP (Natural language processing).

DEPT. OF AIML , JNNCE 102

MACHINE LEARNING STUDY MATERIAL,

o It is used to estimate the value of the parameter in mixed models such as
the Gaussian Mixture Modeland quantitative genetics.

DEPT. OF AIML , JNNCE 103

MACHINE LEARNING STUDY MATERIAL,

Additional Problems:
1. Apply candidate elimination for following dataset: Candidate Elimination
Algorithm):

Example Citations Size InLibrary Price Editions Buy

1 Some Small No Affordable One No

2 Many Big No Expensive Many Yes

3 Many Medium No Expensive Few Yes

4 Many Small No Affordable Many Yes

Solution:
S0: (0, 0, 0, 0, 0) Most Specific Boundary
G0: (?, ?, ?, ?, ?) Most Generic Boundary
The first example is negative, the hypothesis at the specific boundary is consistent, hence
we retain it, and the hypothesis at the generic boundary is inconsistent hence we write
all consistent hypotheses by removing one “?” at a time.
S1: (0, 0, 0, 0, 0)
G1: (Many,?,?,?, ?) (?, Big,?,?,?) (?,Medium,?,?,?) (?,?,?,Exp,?) (?,?,?,?,One) (?,?,?,?,Few)
The second example is positive, the hypothesis at the specific boundary is inconsistent,
hence we extend the specific boundary, and the consistent hypothesis at the generic
boundary is retained and inconsistent hypotheses are removed from the generic
boundary.
S2: (Many, Big, No, Exp, Many)
G2: (Many,?,?,?, ?) (?, Big,?,?,?) (?,?,?,Exp,?) (?,?,?,?,Many)
The third example is positive, the hypothesis at the specific boundary is inconsistent,
hence we extend the specific boundary, and the consistent hypothesis at the generic
boundary is retained and inconsistent hypotheses are removed from the generic
boundary.
S3: (Many, ?, No, Exp, ?)
G3: (Many,?,?,?,?) (?,?,?,exp,?)
The fourth example is positive, the hypothesis at the specific boundary is inconsistent,
hence we extend the specific boundary, and the consistent hypothesis at the generic
boundary is retained and inconsistent hypotheses are removed from the generic
boundary.
S4: (Many, ?, No, ?, ?)
G4: (Many,?,?,?,?)
Learned Version Space by Candidate Elimination Algorithm for given data set is:
(Many, ?, No, ?, ?) (Many, ?, ?, ?, ?)

2. Problem on Version Space – Candidate Elimination. Learning the concept of
"Japanese Economy Car"

DEPT. OF AIML , JNNCE 104

MACHINE LEARNING STUDY MATERIAL,

Features: (Country of Origin, Manufacturer, Color, Decade, Type)

Origin Manufacturer Color Decade Type Example
Type

Japan Honda Blue 1980 Economy Positive

Japan Toyota Green 1970 Sports Negative
Japan Toyota Blue 1990 Economy Positive
USA Chrysler Red 1980 Economy Negative

Japan Honda White 1980 Economy Positive

Solution:
Step 1: Positive Example: (Japan, Honda, Blue, 1980, Economy)
G = { (?, ?, ?, ?, ?) }
S = { (Japan, Honda, Blue, 1980, Economy) }
Step 2: Negative Example: (Japan, Toyota, Green, 1970, Sports)

G =

{ (?, Honda, ?, ?, ?),
(?, ?, Blue, ?, ?),
(?, ?, ?, 1980, ?),
(?, ?, ?, ?, Economy) }

S = { (Japan, Honda, Blue, 1980, Economy) }

Step 3: Positive Example: (Japan, Toyota, Blue, 1990, Economy)

G =
{ (?, ?, Blue, ?, ?),
(?, ?, ?, ?, Economy) }

S = { (Japan, ?, Blue, ?, Economy) }

Step 4: Negative Example: (USA, Chrysler, Red, 1980, Economy)

G =
{ (?, ?, Blue, ?, ?),
(Japan, ?, ?, ?, Economy) }

S = { (Japan, ?, Blue, ?, Economy) }

Step 5: Positive Example: (Japan, Honda, White, 1980, Economy)
G = { (Japan, ?, ?, ?, Economy) }
S = { (Japan, ?, ?, ?, Economy) }

3. In Orange County, 51% of the adults are males. (It doesn't take too much
advanced mathematics to deduce that the other 49% are females.) One adult is
randomly selected for a survey involving credit card usage.
 a) Find the prior probability that the selected person is a male.
b) It is later learned that the selected survey subject was smoking a cigar. Also,
9.5% of males smoke cigars, whereas 1.7% of females smoke cigars (based on data
from the Substance Abuse and Mental Health Services Administration). Use this
additional information to find the probability that the selected subject is a male.

DEPT. OF AIML , JNNCE 105

MACHINE LEARNING STUDY MATERIAL,

4. Apply Naïve Bayes Classifier for the following dataset:

Sl. No. Color Legs Height Smelly Species

1 White 3 Short Yes M

2 Green 2 Tall No M

3 Green 3 Short Yes M

4 White 3 Short Yes M

5 Green 2 Short No H

6 White 2 Tall No H

7 White 2 Tall No H

8 White 2 Short Yes H

Solution:

DEPT. OF AIML , JNNCE 106

MACHINE LEARNING STUDY MATERIAL,

Using the above data, we have to identify the species of an entity with the following
attributes.
X={Color=Green, Legs=2, Height=Tall, Smelly=No}
To predict the class label for the above attribute set, we will first calculate the probability
of the species being M or H in total.
P(Species=M)=4/8=0.5
P(Species=H)=4/8=0.5
Next, we will calculate the conditional probability of each attribute value for each class
label.
P(Color=White/Species=M)=2/4=0.5
P(Color=White/Species=H)=¾=0.75
P(Color=Green/Species=M)=2/4=0.5
P(Color=Green/Species=H)=¼=0.25
P(Legs=2/Species=M)=1/4=0.25
P(Legs=2/Species=H)=4/4=1
P(Legs=3/Species=M)=3/4=0.75
P(Legs=3/Species=H)=0/4=0
P(Height=Tall/Species=M)=3/4=0.75
P(Height=Tall/Species=H)=2/4=0.5
P(Height=Short/Species=M)=1/4=0.25
P(Height=Short/Species=H)=2/4=0.5
P(Smelly=Yes/Species=M)=3/4=0.75
P(Smelly=Yes/Species=H)=1/4=0.25
P(Smelly=No/Species=M)=1/4=0.25
P(Smelly=No/Species=H)=3/4=0.75
We can tabulate the above calculations in the tables for better visualization.
The conditional probability table for the Color attribute is as follows.

Color M H
White 0.5 0.75
Green 0.5 0.25

Conditional Probabilities for Color Attribute
The conditional probability table for the Legs attribute is as follows.

Legs M H
2 0.25 1
3 0.75 0

Conditional Probabilities for Legs Attribute

The conditional probability table for the Height attribute is as follows.

Height M H
Tall 0.75 0.5
Short 0.25 0.5

Conditional Probabilities for Height Attribute
The conditional probability table for the Smelly attribute is as follows.

Smelly M H
Yes 0.75 0.25
No 0.25 0.75

DEPT. OF AIML , JNNCE 107

MACHINE LEARNING STUDY MATERIAL,

Conditional Probabilities for Smelly Attribute
Now that we have calculated the conditional probabilities, we will use them to calculate
the probability of the new attribute set belonging to a single class.
Let us consider X= {Color=Green, Legs=2, Height=Tall, Smelly=No}.
Then, the probability of X belonging to Species M will be as follows.
P(M/X)=P(Species=M)*P(Color=Green/Species=M)*P(Legs=2/Species=M)*P(Height=Ta
ll/Species=M)*P(Smelly=No/Species=M)
 =0.5*0.5*0.25*0.75*0.25
 =0.0117
Similarly, the probability of X belonging to Species H will be calculated as follows.
P(H/X)=P(Species=H)*P(Color=Green/Species=H)*P(Legs=2/Species=H)*P(Height=Tall
/Species=H)*P(Smelly=No/Species=H)
 =0.5*0.25*1*0.5*0.75
 =0.0468
So, the probability of X belonging to Species M is 0.0117 and that to Species H is 0.0468.
Hence, we will assign the entity X with attributes {Color=Green, Legs=2, Height=Tall,
Smelly=No} to species H.

5. Build a decision tree using ID3 algorithm for the given training data in the table
(Buy Computer data), and predict the class of the following new example: age<=30,
income=medium, student=yes, credit-rating=fair

age income student Credit rating Buys computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

DEPT. OF AIML , JNNCE 108

MACHINE LEARNING STUDY MATERIAL,

31…40 high yes fair yes

>40 medium no excellent no

Solution:
The information gain is this mutual information minus the entropy:
The mutual information of the two classes,
Entropy(S)= E(9,5)= -9/14 log2(9/14) – 5/14 log2(5/14)=0.94
Now Consider the Age attribute
For Age, we have three values age<=30 (2 yes and 3 no), age31..40 (4 yes and 0 no), and
age>40 (3 yes and 2 no)
Entropy(age) = 5/14 (-2/5 log2(2/5)-3/5log2(3/5)) + 4/14 (0) + 5/14 (-3/5log2(3/5)-
2/5log2(2/5))
= 5/14(0.9709) + 0 + 5/14(0.9709) = 0.6935
Gain(age) = 0.94 – 0.6935 = 0.2465
Next, consider Income Attribute
For Income, we have three values incomehigh (2 yes and 2 no), incomemedium (4 yes and 2
no), and incomelow (3 yes 1 no)
Entropy(income) = 4/14(-2/4log2(2/4)-2/4log2(2/4)) + 6/14 (-4/6log2(4/6)-
2/6log2(2/6)) + 4/14 (-3/4log2(3/4)-1/4log2(1/4))
= 4/14 (1) + 6/14 (0.918) + 4/14 (0.811)
= 0.285714 + 0.393428 + 0.231714 = 0.9108
Gain(income) = 0.94 – 0.9108 = 0.0292
Next, consider Student Attribute
For Student, we have two values studentyes (6 yes and 1 no) and studentno (3 yes 4 no)
Entropy(student) = 7/14(-6/7log2(6/7)-1/7log2(1/7)) + 7/14(-3/7log2(3/7)-
4/7log2(4/7)
= 7/14(0.5916) + 7/14(0.9852)
= 0.2958 + 0.4926 = 0.7884
Gain (student) = 0.94 – 0.7884 = 0.1516
Finally, consider Credit_Rating Attribute
For Credit_Rating we have two values credit_ratingfair (6 yes and 2 no) and
credit_ratingexcellent (3 yes 3 no)
Entropy(credit_rating) = 8/14(-6/8log2(6/8)-2/8log2(2/8)) + 6/14(-3/6log2(3/6)-
3/6log2(3/6))
= 8/14(0.8112) + 6/14(1)
= 0.4635 + 0.4285 = 0.8920
Gain(credit_rating) = 0.94 – 0.8920 = 0.479
Since Age has the highest Information Gain we start splitting the dataset using the age
attribute.

DEPT. OF AIML , JNNCE 109

MACHINE LEARNING STUDY MATERIAL,

Decision Tree after step 1
Since all records under the branch age31..40 are all of the class, Yes, we can replace the
leaf with Class=Yes

Decision Tree after step 1_1
Now build the decision tree for the left subtree
The same process of splitting has to happen for the two remaining branches.

Left sub-branch
For branch age<=30 we still have attributes income, student, and credit_rating. Which
one should be used to split the partition?
The mutual information is E(Sage<=30)= E(2,3)= -2/5 log2(2/5) – 3/5 log2(3/5)=0.97
For Income, we have three values incomehigh (0 yes and 2 no), incomemedium (1 yes and 1
no) and incomelow (1 yes and 0 no)
Entropy(income) = 2/5(0) + 2/5 (-1/2log2(1/2)-1/2log2(1/2)) + 1/5 (0) = 2/5 (1) = 0.4
Gain(income) = 0.97 – 0.4 = 0.57
For Student, we have two values studentyes (2 yes and 0 no) and studentno (0 yes 3 no)

https://vtupulse.com/wp-content/uploads/2023/01/image.png
https://vtupulse.com/wp-content/uploads/2023/01/image-1.png
https://vtupulse.com/wp-content/uploads/2023/01/image-2.png

DEPT. OF AIML , JNNCE 110

MACHINE LEARNING STUDY MATERIAL,

Entropy(student) = 2/5(0) + 3/5(0) = 0
Gain (student) = 0.97 – 0 = 0.97
We can then safely split on attribute student without checking the other attributes since
the information gain is maximized.

Decision Tree after step 2
Since these two new branches are from distinct classes, we make them into leaf nodes
with their respective class as label:

Decision Tree after step 2_2
Now build the decision tree for right left subtree

Right sub-branch

https://vtupulse.com/wp-content/uploads/2023/01/image-6.png
https://vtupulse.com/wp-content/uploads/2023/01/image-5.png
https://vtupulse.com/wp-content/uploads/2023/01/image-8.png

DEPT. OF AIML , JNNCE 111

MACHINE LEARNING STUDY MATERIAL,

The mutual information is Entropy(Sage>40)= I(3,2)= -3/5 log2(3/5) – 2/5 log2(2/5)=0.97
For Income, we have two values incomemedium (2 yes and 1 no) and incomelow (1 yes and
1 no)
Entropy(income) = 3/5(-2/3log2(2/3)-1/3log2(1/3)) + 2/5 (-1/2log2(1/2)-
1/2log2(1/2))
= 3/5(0.9182)+2/5 (1) = 0.55+0. 4= 0.95
Gain(income) = 0.97 – 0.95 = 0.02
For Student, we have two values studentyes (2 yes and 1 no) and studentno (1 yes and 1
no)
Entropy(student) = 3/5(-2/3log2(2/3)-1/3log2(1/3)) + 2/5(-1/2log2(1/2)-
1/2log2(1/2)) = 0.95
Gain (student) = 0.97 – 0.95 = 0.02
For Credit_Rating, we have two values credit_ratingfair (3 yes and 0 no) and
credit_ratingexcellent (0 yes and 2 no)
Entropy(credit_rating) = 0
Gain(credit_rating) = 0.97 – 0 = 0.97
We then split based on credit_rating. These splits give partitions each with records from
the same class. We just need to make these into leaf nodes with their class label attached:

Decision Tree for Buys Computer
New example: age<=30, income=medium, student=yes, credit-rating=fair
Follow branch(age<=30) then student=yes we predict Class=yes
Buys_computer = yes

https://vtupulse.com/wp-content/uploads/2023/01/image-7.png

DEPT. OF AIML , JNNCE 112

MACHINE LEARNING STUDY MATERIAL,

Model Paper:

Q.1

(a) What is Machine Leaning? Explain the applications of Machine Learning 04M
(b) Discuss the any four main challenges of machine learning 08M

(c) Consider the “Japanese Economy Car” concept and instance given in Table 1.,
Illustrate the hypothesis using Candidate Elimination Learning algorithm.

Origin Manufacturer Color Decade Type Example
Type

Japan Honda Blue 1980 Economy Positive

Japan Toyota Green 1970 Sports Negative

Japan Toyota Blue 1990 Economy Positive

USA Chrysler Red 1980 Economy Negative

Japan Honda White 1980 Economy Positive

08M

Q.2

(a)

Explain Find-S algorithm ad show its working by taking the enjoy sport
concept and training instances given in Table 2.

Exampl
e

Sky

AirTem
p

Humidit
y

Wind

Wate
r

Foreca

st

Enjo
y
Spor
t

1 Sunn
y

Warm Normal Stron
g

War
m

Same Yes

2 Sunn
y

Warm High Stron
g

War
m

Same Yes

3 Rain
y

Cold High Stron
g

War
m

Change No

4 Sunn
y

Warm High Stron
g

Cool Change Yes

10M

(b) Discuss the features of an unbiased Learner. 06M

 (c) State the following problems with respect to Tasks, Performance, and
Experience: i)A Checkers learning problem ii) A Robot driving learning
problem.

04M

Q.3

(a) In context to prepare the data for Machine Learning algorithms, Write a note
on (i) Data Cleaning (ii) Handling text and categorical attributes iii)Feature
scaling

10M

(b) With the code snippets show how Grid Search and Randomized Search helps in
Fine- Tuning a model.

10M

Q.4

(a) Using code snippets, outline the concepts involved in
i) Measuring accuracy using Cross-Validation.
ii) Confusion Matrix.
iii)Precision and Recall.

10M

 (b) With the code snippet explain how Multilabels classification different from
multiclass Multioutput classification?

10M

Q.5 (a) what is gradient descent algorithm and discuss its various types. 10M

DEPT. OF AIML , JNNCE 113

MACHINE LEARNING STUDY MATERIAL,

 (b) In Regularized Linear Models illustrate the three different methods to
constrain the weights.

10M

Q.6

(a) With respect to Nonlinear SVM Classification, explain Polynomial Kernel
Gaussian
and RBF Kernel along with code snippet.

10M

 (b) Show that how SVMs make predictions using Quadratic Programming and
Kernelized SVM.

10 M

Q.7 (a) With an example dataset examine how Decision Trees are used in making

predictions.
10M

 (b) Explain The CART Training Algorithm. 06M

 (c) Identify the features of Regression and Instability w.r.t decision trees. 04M

Q.8

(a) In context to Ensemble methods determine the concepts of
i) Bagging and Pasting.
Voting Classifiers.

10M

 (b) Examine the following boosting methods along with code snippets.
i) AdaBoost
ii) Gradient Boosting

10M

Q.9

(a) Write Bayes theorem. Identify the relationship between Bayes theorem and
the problem of concept learning?

10M

(b) Show that how Maximum Likelihood Hypothesis is helpful for predicting
probabilities.

10M

Q.10

(a) Construct Naïve Bayes Classifier with an Example. 10M

(b) Derive the EM Algorithm in detail. 10M

