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MODULE I: 
 

Definitions of Machine Learning 
 Machine Learning is the science (and art) of programming computers so they 

can learn from data. 
 Machine Learning is the field of study that gives computers the ability to learn 

without being explicitly programmed. 
 A computer program is said to learn from experience E with respect to some task 

T and some performance measure P, if its performance on T, as measured by P, 
improves with experience E. 

 

Need to use Machine Learning 
 
Machine Learning is great for: 

 Problems for which existing solutions require a lot of hand-tuning or long lists of 
rules: one Machine Learning algorithm can often simplify code and perform better. 

Eg: writing traditional programming vs machine learning approach for a spam filter: 
 

 

 
Traditional programming for spam filter detection 
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Machine Learning approach for spam filter detection 

In traditional programming, one writes a detection algorithm for each of the patterns that 
you noticed, and the program would flag emails as spam if a number of these patterns are 
detected. Since the problem is not trivial, your program will likely become a long list of 
complex rules—pretty hard to maintain. In contrast, a spam filter based on Machine 
Learning techniques automatically learns which words and phrases are good predictors 
of spam by detecting unusually frequent patterns of words in the spam examples 
compared to the ham examples. The program is much shorter, easier to maintain, and 
most likely more accurate. 
 

 Complex problems for which there is no good solution at all using a traditional 
approach: the best Machine Learning techniques can find a solution. 
 

 Machine Learning shines is for problems that either are too complex for traditional 
approaches or have no known algorithm. For example, consider speech recognition: 
say you want to start simple and write a program capable of distinguishing the words 
“one” and “two.” You might notice that the word “two” starts with a high-pitch sound 
(“T”), so you could hardcode an algorithm that measures high-pitch sound intensity 
and use that to distinguish ones and twos. Obviously this technique will not scale to 
thousands of words spoken by millions of very different people in noisy environments 
and in dozens of languages. The best solution (at least today) is to write an algorithm 
that learns by itself, given many example recordings for each word. 

 
 Fluctuating environments: a Machine Learning system can adapt to new data. 

Eg: In the spam filter detection example, if spammers notice that all their emails 
containing “4U” are blocked, they might start writing “For U” instead. A spam filter 
using traditional programming techniques would need to be updated to flag “For U” 
emails. If spammers keep working around your spam filter, you will need to keep 
writing new rules forever. In contrast, a spam filter based on Machine Learning 
techniques automatically notices that “For U” has become unusually frequent in spam 
flagged by users, and it starts flagging them without your intervention. 
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Machine Learning solutions adapt to change 

 
 Getting insights about complex problems and large amounts of data. 

ML algorithms can be inspected to see what they have learned (although for some 
algorithms this can be tricky). For instance, once the spam filter has been trained on 
enough spam, it can easily be inspected to reveal the list of words and combinations 
of words that it believes are the best predictors of spam. Sometimes this will reveal 
unsuspected correlations or new trends, and thereby lead to a better understanding 
of the problem. Applying ML techniques to dig into large amounts of data can help 
discover patterns that were not immediately apparent. This is called data mining. 

 

 
Machine Learning can help humans learn 

 

Types of Machine Learning Systems 
There are so many different types of Machine Learning systems that it is useful to classify 
them in broad categories based on: 

 Whether or not they are trained with human supervision  
 Whether or not they can learn incrementally on the fly  
 Whether they work by simply comparing new data points to known data points, 

or instead detect patterns in the training data. 
Classification chart of Machine Learning 
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Supervised/Unsupervised Learning 
Machine Learning systems can be classified according to the amount and type of 
supervision they get during training. There are four major categories: supervised 
learning, unsupervised learning, semisupervised learning, and Reinforcement Learning  
 
In supervised learning, the training data you feed to the algorithm includes the desired 
solutions, called labels. A typical supervised learning task is classification. The spam 
filter is a good example of this: it is trained with many example emails along with 
their class (spam or ham), and it must learn how to classify new emails. 
Another typical task is to predict a target numeric value, such as the price of a car, given 
a set of features (mileage, age, brand, etc.) called predictors. This sort of task 
is called regression. 
Eg:  

 
Classification of ham or spam email 
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Predicting new hose value-Regression 

 
Unsupervised learning 
In unsupervised learning, the training data is unlabeled. The system tries to learn without 
a supervisor. For example, say you have a lot of data about your blog’s visitors. You may 
want to run a clustering algorithm to try to detect groups of similar visitors. At no point 
do you tell the algorithm which group a visitor belongs to: it finds those connections 
without your help. For example, it might notice that 40% of your visitors are males who 
love comic books and generally read your blog in the evening, while 20% are young sci-fi 
lovers who visit during the weekends, and so on. If you use a hierarchical 
clustering algorithm, it may also subdivide each group into smaller groups. This may help 
you target your posts for each group. 
Eg: 

 
Clustering of visitors of a blog 

 
Usecases/Applications of unsupervised learning 
There are different use cases of unsupervised learning: 
(i) Visualization 
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      Visualization algorithms are also good examples of unsupervised learning algorithms: 
you feed them a lot of complex and unlabeled data, and they output a 2D or 3D 
representation of your data that can easily be plotted.  
Eg: Visualization of various objects performing semantic clustering 

 
 
(ii)Dimensionality Reduction 
❖ The number of input features, variables, or columns present in a given dataset is 

known as dimensionality,  
❖ and the process to reduce these features is called dimensionality reduction 

(Feature extraction). 
❖ A dataset contains a huge number of input features in various cases, which makes 

the predictive modeling task more complicated.  
❖ Because it is very difficult to visualize or make predictions for the training dataset 

with a high number of features, for such cases, dimensionality reduction 
techniques are required to use. 
Eg: 
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(iii) Anomaly detection 
 Anomaly detection detects unusual credit card transactions to prevent fraud, 
catching manufacturing defects, or automatically removing outliers from a dataset 
before feeding it to another learning algorithm. The system is trained with normal 
instances, and when it sees a new instance it can tell whether it looks like a normal 
one or whether it is likely an anomaly. 
Eg:  

 
 
(iv) Association rule mining 
Association rule learning is a type of unsupervised learning technique that checks 
for the dependency of one data item on another data item and maps accordingly 
so that it can be more profitable. It tries to find some interesting relations or 
associations among the variables of dataset. It is based on different rules to 
discover the interesting relations between variables in the database.. 

For example, if a customer buys bread, he most likely can also buy butter, eggs, or milk, 
so these products are stored within a shelf or mostly nearby. Consider the below diagram: 
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Semi-supervised learning 
Some algorithms can deal with partially labeled training data, usually a lot of unlabeled 
data and a little bit of labeled data. This is called semisupervised learning. Some photo-
hosting services, such as Google Photos, are good examples of this. Once you upload all 
your family photos to the service, it automatically recognizes that the same person A 
shows up in photos 1, 5, and 11, while another person B shows up in photos 2, 5, and 7. 
This is the unsupervised part of the algorithm (clustering). Perform one label per 
person and it is able to name everyone in every photo, which is useful for searching photo. 
Most semisupervised learning algorithms are combinations of unsupervised and 
supervised algorithms. 
Eg:  

 
 

Self supervised learning 
Self-supervised learning is a deep learning methodology where a model is pre-trained 
using unlabelled data and the data labels are generated automatically, which are further 
used in subsequent iterations as ground truths. The fundamental idea for self-
supervised learning is to create supervisory signals by making sense of the unlabeled 
data provided to it in an unsupervised fashion on the first iteration. Then, the model 
uses the high-confidence data labels among those generated to train the model in 
subsequent iterations. 

https://www.geeksforgeeks.org/introduction-deep-learning/
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For example, a self-supervised learning model might be trained to predict the location 
of an object in an image given the surrounding pixels to classify a video as depicting a 
particular action. 
 
Reinforcement Learning 
Reinforcement Learning  system uses an agent in this context which can observe the 
environment, select and perform actions, and get rewards in return (or penalties in the 
form of negative rewards). It must then learn by itself what is the best strategy, called 
a policy, to get the most reward over time. A policy defines what action the agent should 
choose when it is in a given situation. 
Eg: 

 
 
 
Batch and Online Learning 
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In batch learning, the system is incapable of learning incrementally: it must be trained 
using all the available data. First the system is trained, and then it is launched into 
production and runs without learning anymore; it just applies what it has learned. This 
is called offline learning. 
 
Drawbacks: 
Handling large amounts of data: Batch learning requires loading the entire dataset into 
memory for training. This becomes a challenge when dealing with large datasets that 
exceed the available memory capacity. 
Hardware limitations: Batch learning can be computationally expensive, especially when 
dealing with complex models or large datasets. Training a model on a single machine may 
take a significant amount of time and may require high-performance hardware, such as 
GPUs or specialized processing units. 
Availability constraints: In some scenarios, obtaining the entire dataset required for batch 
learning may not be feasible or practical. 
 

online learning  
In the online learning, data is fed to the model in small batches, sequentially. These batches 
are called mini batches. After, each batch of training, your model gets better. since these 
batches are small chunks of data. so you can perform this training on server (in 
production) That’s why it is called online learning means your model is getting trained 
when your model is on server. 
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Eg: Online learning system  

 
Online learning is great for systems that receive data as a continuous flow (e.g., stock 
prices) and need to adapt to change rapidly or autonomously. It is also a good option if 
you have limited computing resources: once an online learning system has learned about 
new data instances, it does not need them anymore, so you can discard them. 
Using online learning to handle huge datasets 

 
One important parameter of online learning systems is how fast they should adapt to 
changing data: this is called the learning rate. If you set a high learning rate, then your 
system will rapidly adapt to new data, but it will also tend to quickly forget the old data. 
Conversely, if you set a low learning rate, the system will have more inertia; that is, it will 
learn more slowly, but it will also be less sensitive to noise in the new data or to sequences 
of nonrepresentative data points. A big challenge with online learning is that if bad data 
is fed to the system, the system’s performance will gradually decline.  
 

Instance-Based Versus Model-Based Learning 
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One more way to categorize Machine Learning systems is by how they generalize. There 
are two main approaches to generalization: instance-based learning and model-based 
learning. 
Model-Based Learning 
Model-based learning involves creating a mathematical model that can predict outcomes 
based on input data. The model is trained on a large dataset and then used to make 
predictions on new data. The model can be thought of as a set of rules that the machine 
uses to make predictions. In model-based learning, the training data is used to create a 
model that can be generalized to new data. The model is typically created using statistical 
algorithms such as linear regression, logistic regression, decision trees, and neural 
networks. These algorithms use the training data to create a mathematical model that can 
be used to predict outcomes. 
Eg: 

 
Advantages of Model-Based Learning 

1. Faster predictions: Model-based learning is typically faster than instance-
based learning because the model is already created and can be used to make 
predictions quickly. 

2. More accurate predictions: Model-based learning can often make more 
accurate predictions than instance-based learning because the model is 
trained on a large dataset and can generalize to new data. 

3. Better understanding of data Model-based learning allows you to gain a better 
understanding of the relationships between input and output variables.  

Disadvantages of Model-Based Learning 
1. Requires a large dataset: model-based learning requires a large dataset to 

train the model.  
2. Requires expert knowledge: Model-based learning requires expert knowledge 

of statistical algorithms and mathematical modeling. 
3. Requires expert knowledge: Model-based learning requires expert knowledge 

of statistical algorithms and mathematical modeling.  
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Instance-Based Learning 
Instance-based learning involves using the entire dataset to make predictions. The 
machine learns by storing all instances of data and then using these instances to make 
predictions on new data. The machine compares the new data to the instances it has seen 
before and uses the closest match to make a prediction. In instance-based learning, no 
model is created. Instead, the machine stores all of the training data and uses this data to 
make predictions based on new data. Instance-based learning is often used in pattern 
recognition, clustering, and anomaly detection. 
Eg: 

 
Advantages of Instance-Based Learning 

1. No need for model creation: Instance-based learning doesn’t require creating 
a model. 

2. Can handle small datasets: Instance-based learning can handle small datasets 
because it doesn’t require a large dataset to create a model. 

3. More flexibility: Instance-based learning can be more flexible than model-
based learning because the machine stores all instances of data and can use 
this data to make predictions. 

Disadvantages of Instance-Based Learning 
1. Slower predictions: Instance-based learning is typically slower than model-

based learning because the machine has to compare the new data to all 
instances of data in order to make a prediction. 

2. Less accurate predictions: Instance-based learning can often make less 
accurate predictions than model-based learning because it doesn’t have a 
mathematical model to generalize from. 

3. Limited understanding of data: Instance-based learning doesn’t provide as 
much insight into the relationships between input and output variables as 
model-based learning does. 
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Main Challenges of Machine Learning 
 

Insufficient Quantity of Training Data 
For a toddler to learn what an apple is, all it takes is for you to point to an apple and say 
“apple” (possibly repeating this procedure a few times). Now the child is able to recognize 
apples in all sorts of colors and shapes. Machine Learning is not quite there yet; it takes a 
lot of data for most Machine Learning algorithms to work properly. Even for very simple 
problems you typically need thousands of examples, and for complex problems such as 
image or speech recognition you may need millions of examples (unless you can reuse 
parts of an existing model. 
 
Nonrepresentative Training Data 
In order to generalize well, it is crucial that your training data be representative of the 
new cases you want to generalize to. This is true whether you use instance-based learning 
or model-based learning. It is crucial to use a training set that is representative of the 
cases you want to generalize to. This is often harder than it sounds: if the sample is too 
small, you will have sampling noise (i.e., nonrepresentative data as a result of chance), 
but even very large samples can be nonrepresentative if the sampling method is flawed. 
This is called sampling bias.  
Eg: you want to build a system to recognize funk music videos. One way to build your 
training set is to search “funk music” on YouTube and use the resulting videos. But this 
assumes that YouTube’s search engine returns a set of videos that are representative of 
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all the funk music videos on YouTube. In reality, the search results are likely to be biased 
toward popular artists (and if you live in Brazil you will get a lot of “funk carioca” videos, 
which sound nothing like James Brown) 
 
Poor-Quality Data 
If the training data is full of errors, outliers, and noise (e.g., due to poor-quality 
measurements), it will make it harder for the system to detect the underlying patterns, 
so your system is less likely to perform well. It is often well worth the effort to spend time 
cleaning up your training data. The truth is, most data scientists spend a significant part 
of their time doing just that.  
 
Irrelevant Features 
As the saying goes: garbage in, garbage out. Your system will only be capable of learning 
if the training data contains enough relevant features and not too many irrelevant ones. 
A critical part of the success of a Machine Learning project is coming up with a good set 
of features to train on. This process, called feature engineering, involves: 

• Feature selection: selecting the most useful features to train on among 
existing features. 
• Feature extraction: combining existing features to produce a more useful 
one (as we saw earlier, dimensionality reduction algorithms can help). 
• Creating new features by gathering new data. 

 
overfitting:  
it occurs when your model is too simple to learn the underlying structure of the data. For 
example, a linear model of life satisfaction is prone to underfit; reality is just more 
complex than the model, so its predictions are bound to be inaccurate, even on the 
training examples. 
The main options to fix this problem are: 

• Selecting a more powerful model, with more parameters 
• Feeding better features to the learning algorithm (feature engineering) 
• Reducing the constraints on the model (e.g., reducing the regularization 
hyperparameter) 

 
Underfitting 
A statistical model or a machine learning algorithm is said to have underfitting when a 
model is too simple to capture data complexities. It represents the inability of the model 
to learn the training data effectively result in poor performance both on the training 
and testing data. In simple terms, an underfit model’s are inaccurate, especially when 
applied to new, unseen examples. It mainly happens when we uses very simple model 
with overly simplified assumptions. To address underfitting problem of the model, we 
need to use more complex models, with enhanced feature representation, and less 
regularization. 
 
Graphs to differentiate overfitting, underfitting and appropriate-fitting 
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Learning 
Learning is the action or process of obtaining information or ability through studying, 
practicing, being instructed, or experiencing something. Learning techniques can be split 
into five categories: 

1. Rote Learning (Memorizing): Memorizing things without understanding the 
underlying principles or rationale. 

2. Instructions (Passive Learning): Learning from a teacher or expert. 
3. Analogy (Experience): We may learn new things by applying what we’ve learned 

in the past. 
4. Inductive Learning (Experience): Formulating a generalized notion based on prior 

experience. 
5. Deductive Learning: Getting new information from old information. 

 

Concept Learning 
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Concept learning, as a broader term, includes both case-based and instance-based 
learning. At its core, concept learning involves the extraction of general rules or patterns 
from specific instances to make predictions on new, unseen data. The ultimate goal is for 
the machine to grasp abstract concepts and apply them in diverse contexts. 
Concept learning in machine learning is not confined to a single pattern; it spans various 
approaches, including rule-based learning, neural networks, decision trees, and more. 
The choice of approach depends on the nature of the problem and the characteristics of 
the data. 
each concept can be thought of as a boolean-valued function defined over this larger set. 
Example: using concept to classify birds: 

 
Understanding the Concept: 
The set of instances, represented by X, is the list of elements over which the notion is 
defined. The target idea, represented by c, is the notion of action to be learned. It’s a 
boolean-valued function that’s defined over X and may be expressed as: 
c: X -> {0, 1} 
So, when we have a subset of the training with certain attributes of the target concept c, 
the learner’s issue is to estimate c from the training data. 
The letter H stands for the collection of all conceivable hypotheses that a learner could 
explore while determining the identification of the target idea. 
A learner’s objective is to create a hypothesis h that can identify all of the objects in X in 
such a way that: 
h(x) = c(x) for all x in X 
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In this sense, there are three things that an algorithm that enables concept learning must 
have: 
1. Details about the training (Past experiences to train our models) 
2. Target Conception (Hypothesis to identify data objects) 
3. Data objects themselves (For testing the models) 
 

Hypothesis in Machine Learning (ML) 
The hypothesis is one of the commonly used concepts of statistics in Machine Learning. 
It is specifically used in Supervised Machine learning, where an ML model learns a 
function that best maps the input to corresponding outputs with the help of an available 
dataset. 

 
In supervised learning techniques, the main aim is to determine the possible hypothesis 
out of hypothesis space that best maps input to the corresponding or correct outputs. 
There are some common methods given to find out the possible hypothesis from the 
Hypothesis space, where hypothesis space is represented by uppercase-h (H) and 
hypothesis by lowercase-h (h).  
 

Hypothesis space (H): 
Hypothesis space is defined as a set of all possible legal hypotheses; hence it is also known 
as a hypothesis set. It is used by supervised machine learning algorithms to determine 
the best possible hypothesis to describe the target function or best maps input to output. 
Hypothesis (h): 
It is defined as the approximate function that best describes the target in supervised 
machine learning algorithms. It is primarily based on data as well as bias and restrictions 
applied to data. 
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Designing a Learning System in Machine Learning 
Designing a learning system in machine learning requires careful consideration of several 
key factors, including the type of data being used, the desired outcome, and the available 
resources.  

 The first step in designing a learning system in machine learning is to identify the 
type of data that will be used. This can include structured data, such as numerical 
and categorical data, as well as unstructured data, such as text and images. The 
type of data will determine the type of machine learning algorithms that can be 
used and the preprocessing steps required. 

 Once the data has been identified, the next step is to determine the desired 
outcome of the learning system. This can include classifying data, making 
predictions, or identifying patterns in the data. The desired outcome will 
determine the type of machine learning algorithm that should be used, as well as 
the evaluation metrics that will be used to measure the performance of the 
learning system. 

 Next, the resources available for the learning system must be considered. This 
includes the amount of data available, the computational power available, and the 
amount of time available to train the model. These resources will determine the 
complexity of the machine learning algorithm that can be used and the amount of 
data that can be used for training. 

 Once the data, desired outcome, and resources have been identified, it is time to 
select a machine-learning algorithm and begin the training process. Decision trees, 
SVMs, and neural networks are examples of common algorithms. It is crucial to 
assess the effectiveness of the learning system using the right assessment 
measures, such as recall, accuracy, and precision. 

 After the learning system is trained, it is important to fine-tune the model by 
adjusting the parameters and hyperparameters. This can be done using 
techniques such as cross-validation and grid search. The final model should be 
tested on a hold-out test set to evaluate its performance on unseen data. 
 

checkers learning problem 
For a checkers learning problem, the three elements will be, 
1. Task T: To play checkers 
2. Performance measure P: Total percent of the game won in the tournament. 
3. Training experience E: A set of games played against itself 
 
A Robot Driving Learning Problem:   
For a robot to drive on a four-lane highway it needs a human-like understanding of all the 
possibilities it might encounter. With the use of sight scanners and advanced machine 
learning algorithms, it can be made possible.  
  
T –>  To drive on public four-lane highways using sight scanners. 
P -> the average distance progressed before an error. 
E -> the order of images and steering instructions noted down while observing a human 
driver. 
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Training experience 
During the design of the checker's learning system, the type of training experience 
available for a learning system will have a significant effect on the success or failure of the 
learning. 

1. Direct or Indirect training experience — In the case of direct training 
experience, an individual board states and correct move for each board state 
are given. In case of indirect training experience, the move sequences for a 
game and the final result (win, loss or draw) are given for a number of games.  

2. Supervised — The training experience will be labeled, which means, all the 
board states will be labeled with the correct move. So the learning takes place 
in the presence of a supervisor. 
Unsupervised — The training experience will be unlabeled, which means, all 
the board states will not have the moves. So the learner generates random 
games and plays against itself with no supervision involvement. 
Semi-supervised — Learner generates game states and asks the supervisor for 
help in finding the correct move if the board state is confusing. 

3. Is the training experience good —  
Performance is best when training examples and test examples are from the 
same/a similar distribution. 
 

Choosing the Target Function 
In this design step, we need to determine exactly what type of knowledge has to be learned 
and it's used by the performance program. Here there are 2 considerations — direct and 
indirect experience. 
During the direct experience, the checkers learning system, it needs only to learn how to 
choose the best move among some large search space. We need to find a target function 
that will help us choose the best move among alternatives. Let us call this function 
ChooseMove and use the notation ChooseMove : B →M to indicate that this function 
accepts as input any board from the set of legal board states B and produces as output 
some move from the set of legal moves M. 
When there is an indirect experience, it becomes difficult to learn such function. How 
about assigning a real score to the board state. So the function be V : B →R indicating that 
this accepts as input any board from the set of legal board states B and produces an output 
a real score. This function assigns the higher scores to better board states. 
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Choosing a representation for the Target Function 
Now its time to choose a representation that the learning program will use to describe the 
function ^V that it will learn.  
choose a simple representation for any given board state, the function ^V will be 
calculated as a linear combination of the following board features: 

• x1(b) — number of black pieces on board b 
• x2(b) — number of red pieces on b 
• x3(b) — number of black kings on b 
• x4(b) — number of red kings on b 
• x5(b) — number of red pieces threatened by black (i.e., which can be taken on 

black’s next turn) 
• x6(b) — number of black pieces threatened by red 

^V = w0 + w1 · x1(b) + w2 · x2(b) + w3 · x3(b) + w4 · x4(b) +w5 · x5(b) + w6 · x6(b) 
Final Design for Checkers Learning system 

1. The performance System — Takes a new board as input and outputs a trace of 
the game it played against itself. 

2. The Critic — Takes the trace of a game as an input and outputs a set of training 
examples of the target function. 

3. The Generalizer — Takes training examples as input and outputs a hypothesis 
that estimates the target function. Good generalization to new cases is crucial. 

4. The Experiment Generator — Takes the current hypothesis (currently learned 
function) as input and outputs a new problem (an initial board state) for the 
performance system to explore. 
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Final design of the checkers system 
Perspectives and Issues in Machine Learning 
Following are the list of issues in machine learning: 
1. What algorithms exist for learning general target functions from specific training 
examples? In what settings will particular algorithms converge to the desired function, 
given sufficient training data? Which algorithms perform best for which types of 
problems and representations? 
2. How much training data is sufficient? What general bounds can be found to relate the 
confidence in learned hypotheses to the amount of training experience and the character 
of the learner’s hypothesis space? 
3. When and how can prior knowledge held by the learner guide the process of 
generalizing from examples? Can prior knowledge be helpful even when it is only 
approximately correct? 
4. What is the best strategy for choosing a useful next training experience, and how does 
the choice of this strategy alter the complexity of the learning problem? 
5. What is the best way to reduce the learning task to one or more function approximation 
problems? Put another way, what specific functions should the system attempt to learn? 
Can this process itself be automated? 
5. How can the learner automatically alter its representation to improve its ability to 
represent and learn the target function? 
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Concept Learning in Machine Learning 
Concept learning can be formulated as a problem of searching through a predefined space 
of potential hypotheses for the hypothesis that best fits the training examples. Consider 
the example task of learning the target concept “days on which person enjoys his favorite 
water sport.” Below Table describes a set of example days, each represented by a set 
of attributes. The attribute EnjoySport indicates whether or not a person enjoys his 
favorite water sport on this day. The task is to learn to predict the value of EnjoySport for 
an arbitrary day, based on the values of its other attributes. 
 

 
Concept Learning Notations 

 
  

Hypothesis representation for Machine Learning 
In particular, let each hypothesis be a vector of six constraints, specifying the values of 
the six attributes Sky, AirTemp, Humidity, Wind, Water, and Forecast. 
For each attribute, the hypothesis will either 

• indicate by a “?’ that any value is acceptable for this attribute, 
• specify a single required value (e.g., Warm) for the attribute, or 
• indicate by a “ø” that no value is acceptable. 

If some instance x satisfies all the constraints of hypothesis h, then h classifies x as a 
positive example (h(x) = 1). 
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To illustrate, the hypothesis that a person enjoys his favorite sport only on cold days with 
high humidity (independent of the values of the other attributes) is represented by the 
expression 
(?, Cold, High, ?, ?, ?) 
 

Most General and Specific Hypothesis 
The most general hypothesis-that every day is a positive example-is represented by 
(?, ?, ?, ?, ?, ?) 
and the most specific possible hypothesis-that no day is a positive example-is 
represented by 
(ø, ø, ø, ø, ø, ø) 
 

Instance Space 
Consider, for example, the instances X and hypotheses H in the EnjoySport learning task. 
Given that the attribute Sky has three possible values, and that AirTemp, Humidity, Wind, 
Water, and Forecast each have two possible values, the instance space X contains 
exactly 3 . 2 . 2 . 2 . 2 . 2 = 96 distinct instances. 
Example: 
Let’s assume there are two features F1 and F2 with F1 has A and B as possibilities and F2 
as X and Y as possibilities. 
F1  – > A, B 
F2  – > X, Y 
Instance Space: (A, X), (A, Y), (B, X), (B, Y) – 4 Examples 
Hypothesis Space: (A, X), (A, Y), (A, ø), (A, ?), (B, X), (B, Y), (B, ø), (B, ?), (ø, X), (ø, Y), (ø, ø), 
(ø, ?), (?, X), (?, Y), (?, ø), (?, ?)  – 16 
Hypothesis Space: (A, X), (A, Y), (A, ?), (B, X), (B, Y), (B, ?), (?, X), (?, Y (?, ?) – 10 

 
 

Hypothesis Space 
Similarly there are 5 . 4 . 4 . 4 . 4 . 4 = 5120 syntactically distinct hypotheses within H. 
Notice, however, that every hypothesis containing one or more “ø” symbols represents 
the empty set of instances; that is, it classifies every instance as negative. 
Therefore, the number of semantically distinct hypotheses is only 1 + (4 . 3 . 3 . 3 . 3 . 3) = 
973. 
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General-to-Specific Ordering of Hypotheses 
To illustrate the general-to-specific ordering, consider the two hypotheses 
h1 = (Sunny, ?, ?, Strong, ?, ?) 
h2 = (Sunny, ?, ?, ?, ?, ?) 
Now consider the sets of instances that are classified positive by hl and by h2. Because h2 
imposes fewer constraints on the instance, it classifies more instances as positive. 
In fact, any instance classified positive by h1 will also be classified positive by h2. 
Therefore, we say that h2 is more general than h1. 
For any instance x in X and hypothesis h in H, we say that x satisjies h if and only if h(x) = 
1. 
We define the more_general_than_or_equal_to relation in terms of the sets of instances 
that satisfy the two hypotheses. 
 

FIND-S algorithm 
Find-S algorithm, is a machine learning algorithm that seeks to find a maximally specific 
hypothesis based on labeled training data. It starts with the most specific hypothesis and 
generalizes it by incorporating positive examples. It ignores negative examples during 
the learning process. The algorithm's objective is to discover a hypothesis that accurately 
represents the target concept by progressively expanding the hypothesis space until it 
covers all positive instances. 

 
Inner working of Find-S algorithm 
The Find-S algorithm operates on a hypothesis space to find a general hypothesis that 
accurately represents the target concept based on labeled training data. Let's delve into 
the inner workings of the algorithm − 

• Initialization − The algorithm starts with the most specific hypothesis, denoted as 
h. This initial hypothesis is the most restrictive concept and typically assumes no 
positive examples. It may be represented as h = <∅, ∅, ..., ∅>, where ∅ denotes 
"don't care" or "unknown" values for each attribute. 

• Iterative Process − The algorithm iterates through each training example and 
refines the hypothesis based on whether the example is positive or negative. 

 For each positive training example (an example labeled as the target class), 
the algorithm updates the hypothesis by generalizing it to include the 
attributes of the example. The hypothesis becomes more general as it 
covers more positive examples. 
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 For each negative training example (an example labeled as a non-target 
class), the algorithm ignores it as the hypothesis should not cover negative 
examples. The hypothesis remains unchanged for negative examples. 

• Generalization − After processing all the training examples, the algorithm 
produces a final hypothesis that covers all positive examples while excluding 
negative examples. This final hypothesis represents the generalized concept that 
the algorithm has learned from the training data. 
 

During the iterative process, the algorithm may introduce "don't care" symbols or 
placeholders (often denoted as "?") in the hypothesis for attributes that vary among 
positive examples. This allows the algorithm to generalize the concept by accommodating 
varying attribute values. The algorithm discovers patterns in the training data and 
provides a reliable representation of the concept being learned. 
Example: 
 
Consider the data set: 

Sky AirTemp Humidity Wind Water Forecast EnjoySport 

Sunny Warm Normal Strong Warm Same Yes 

Sunny Warm High Strong Warm Same Yes 

Rainy Cold High Strong Warm Change No 

Sunny Warm High Strong Cool Change Yes 

 
Step1: Initialization 
H=[<0,0,0,0,0>] 
Step 2: Consider first sample, compare the samp le value and hypothesis values one by 
one and make changes:  
H=[<Sunny,Warm,Normal,Strong,Warm,Same>] 
 
Step 3: Consider second sample as it is also positive 
H=[<Sunny,Warm,?,Strong,Warm,Same>] 
 
Step 4: Skip third sample as it is negative and then consider fourth sample 
H=[<Sunny,Warm,?,Strong,?,?>] 
 
The key property of the FIND-S algorithm — 

• FIND-S is guaranteed to output the most specific hypothesis within H that is 
consistent with the positive training examples 

FIND-S algorithm’s final hypothesis will also be consistent with the negative examples 
provided the correct target concept is contained in H, and provided the training examples 
are correct 
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Unanswered Questions by Find-S algorithm in Machine Learning 
1. Has the learner converged to the correct target concept? Although FIND-S will find 

a hypothesis consistent with the training data, it has no way to determine whether 
it has found the only hypothesis in H consistent with the data  

2. Why prefer the most specific hypothesis? In case there are multiple hypotheses 
consistent with the training examples, FIND-S will find the most specific.  

3. Are the training examples consistent? In most practical learning problems there is 
some chance that the training examples will contain at least some errors or noise. 

4. What if there are several maximally specific consistent hypotheses? In the 
hypothesis language H for the EnjoySport task, there is always a unique, most 
specific hypothesis consistent with any set of positive examples. 

 

Consistent and Version Space 
A hypothesis h is consistent with a set of training examples D if and only if h(x) = c(x) for 
each example (x, c(x)) in D. 

 
The version space, denoted VS_H,D with respect to hypothesis space H and training 
examples D, is the subset of hypotheses from H consistent with the training examples in D 

 
 

The List-Then-Eliminate algorithm 
One obvious way to represent the version space is simply to list all of its members. This 
leads to a simple learning algorithm, which we might call the List-Then-Eliminate 
algorithm. The algorithm is as follows : 

 
 

Representation for Version Spaces 
we can represent the version space in terms of its most specific and most general 
members. For the enjoysport training examples D, we can output the below list of 
hypothesis which are consistent with D. In other words, the below list of hypothesis is a 
version space. 
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n the list of hypothesis, there are two extremes representing general (h1 and h2) and 
specific (h6) hypothesis. Lets define these 2 extremes as general boundary G and specific 
boundary S. 
Definition — G 
The general boundary G, with respect to hypothesis space H and training data D, is the set 
of maximally general members of H consistent with D. 
Definition — S 
The specific boundary S, with respect to hypothesis space H and training data D, is the set 
of minimally general (i.e., maximally specific) members of H consistent with D. 
 

Candidate Elimination algorithm 
The Candidate-Elimination algorithm computes the version space containing all 
hypotheses from H that are consistent with an observed sequence of training example. 
 
Step 1: Read the dataset 
Step 2: Initialize S and G 
Step 3: Read a sample from dataset 
Step 4: If sample is not positive go to Step 5 
Step 4(a): If first sample, store all features to S. Go to Step 4(d) 
Step 4(b): Otherwise, check if feature not same as S. 
Step 4(c): If not, store ‘?’ to S.  
Step 4(d): Check if G is not ‘?’ and S is ‘?’, then make G as ‘?’ 
Step 5: For negative sample, check feature is not same as S and S is not ‘?’ 
Step 5(a): If yes, then store S to G. Else G=‘?’ 
Step 6: Check whether all samples are over. If no goto Step 3 
Step 7: Display S and G 
 
Example: 
Consider the dataset: 

Sky AirTemp Humidity Wind Water Forecast EnjoySport 

Sunny Warm Normal Strong Warm Same Yes 

Sunny Warm High Strong Warm Same Yes 

Rainy Cold High Strong Warm Change No 
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Sunny Warm High Strong Cool Change Yes 

 
Initial Values:  
G0=[<?,?,?,?,?,?>, <?,?,?,?,?,?>, <?,?,?,?,?,?>, <?,?,?,?,?,?>, <?,?,?,?,?,?>, <?,?,?,?,?,?>] 
S0=[<0,0,0,0,0,0>] 
 
Step1: For first sample (positive – update S) 
G1=[<?,?,?,?,?,?>, <?,?,?,?,?,?>, <?,?,?,?,?,?>, <?,?,?,?,?,?>, <?,?,?,?,?,?>, <?,?,?,?,?,?>] 
S1=[<Sunny,Warm,Normal,Strong,Warm,Same>] 
 
Step2: For second sample (positive – update S) 
G2=[<?,?,?,?,?,?>, <?,?,?,?,?,?>, <?,?,?,?,?,?>, <?,?,?,?,?,?>, <?,?,?,?,?,?>, <?,?,?,?,?,?>] 
S2=[<Sunny,Warm,?,Strong,Warm,Same>] 
 
Step 3: For third sample (negative – update G) 
G3=[<Sunny,?,?,?,?,?>, <?,Warm,?,?,?,?>, <?,?,?,?,?,?>, <?,?,?,?,?,?>, <?,?,?,?,?,?>, 
<?,?,?,?,?,Same>] 
S3=[<Sunny,Warm,?,Strong,Warm,Same>] 
Step 4: For fourth sample (positive – update S) 
G4=[<Sunny,?,?,?,?,?>, <?,Warm,?,?,?,?>, <?,?,?,?,?,?>, <?,?,?,?,?,?>, <?,?,?,?,?,?>, <?,?,?,?,?,?>] 
S4=[<Sunny,Warm,?,Strong,?,?] 
 

Inductive Bias 
Every machine learning algorithm with any ability to generalize beyond the training data 
that it sees has, by definition, some type of inductive bias. That is, there is 
some fundamental assumption or set of assumptions that the learner makes about the 
target function that enables it to generalize beyond the training data. he candidate 
elimination algorithm converge towards the true target concept provided it is given 
accurate training examples and provided its initial hypothesis space contains the target 
concept. 

• What if the target concept is not contained in the hypothesis space? 
• Can we avoid this difficulty by using a hypothesis space that includes every 

possible hypothesis ? 
• How does the size of this hypothesis space influence the ability of the 

algorithm to generalize to unobserved instances ? 
• How does the size of the hypothesis space influence the number of training 

examples that must be observed ? 
 
The following three learning algorithms are listed from weakest to strongest bias. 
1.Rote-learning : storing each observed training example in memory. If the instance is 
found in memory, the store classification is returned. 
Inductive bias : nothing — Weakest bias 
2.Candidate-Elimination algorithm : new instances are classified only in the case where all 
members of the current version space agree in the classification. 
Inductive bias : Target concept can be represented in its hypothesis space 
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3. Find-S : find the most specific hypothesis consistent with the training examples. It then 
uses this hypothesis to classify all subsequent instances. 
Inductive bias : Target concept can be represented in its hypothesis space + All instances 
are negative instances unless the opposite is entailed by its other knowledge — Strongest 
bias 
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MODULE-II 
 

Working with real data 
Many of the Machine Learning Crash Course Programming Exercises use the California 
housing data set, which contains data drawn from the 1990 U.S. Census. The following 
table provides descriptions, data ranges, and data types for each feature in the data set. 

Column title Description 

longitude A measure of how far west a house is; a more negative value is farther 
west 

latitude A measure of how far north a house is; a higher value is farther north 

housingMedianAge Median age of a house within a block; a lower number is a newer 
building 

totalRooms Total number of rooms within a block 

totalBedrooms Total number of bedrooms within a block 

population Total number of people residing within a block 

households Total number of households, a group of people residing within a home 
unit, for a block 

medianIncome Median income for households within a block of houses (measured in 
tens of thousands of US Dollars) 

medianHouseValue Median house value for households within a block (measured in US 
Dollars) 

Ocean proximity The distance from the house to ocean expressed as different categories 

 
 

Exploring the dataset 
 
Google colab is used to operate on this data set and perform machine learning 
preprocessing operations and machine learning techniques. 
 
#Code snippet to load the dataset 
import pandas as pd 
housing=pd.read_csv("/content/sample_data/housing.csv",sep=",") 
 
#Code snippet for descriptive statistics 
housing.head() #Display first five records 
housing.info()   
#Get metadata information like number of samples and datatypes of each column and 
number of non-null values. 
 
  
#Working with categorical column attribute 
#Number of instances of each category 
housing["ocean_proximity"].value_counts() 
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Get descriptive stats 
housing.describe() 
Different statistics like count, mean, standard deviation, minimum, 25%, 50% and 75% 
data and maximum values are displayed. 
#Visualization 
import matplotlib.pyplot as plt 
housing.hist(bins=50,figsize=(12,8)) 
plt.show() 
 

Dataset splitting 
Two standard techniques for splitting data set is random shuffling and stratified 
sampling. A simple random sample is used to represent the entire data population and 
randomly selects individuals from the population without any other consideration. 
A stratified random sample, on the other hand, first divides the population into smaller 
groups, or strata, based on shared characteristics. Therefore, a stratified sampling 
strategy will ensure that members from each subgroup are included in the data analysis. 
 
Code for simple random sampling: 
import numpy as np 
def shuffle_and_split(dataset,test_ratio): 
  test_size=int(test_ratio*len(dataset)) 
  np.random.seed(42) 
  shuffled_indices=np.random.permutation(len(dataset)) 
  test_indices=shuffled_indices[:test_size] 
  train_indices=shuffled_indices[test_size:] 
  return dataset.iloc[train_indices],dataset.iloc[test_indices] 
train_data,test_data=shuffle_and_split(housing,0.2) 
 
Code for stratified random sampling: 
#create income categories 
import matplotlib.pyplot as plt 
housing["income_cat"]=pd.cut(housing["median_income"], 
                             bins=[0,1.5,3.0,4.5,6,np.inf],labels=[1,2,3,4,5]) 
#Stratified sampling 
from sklearn.model_selection import StratifiedShuffleSplit 
splitter=StratifiedShuffleSplit(n_splits=1,test_size=0.2,random_state=42) 
strat_splits=[] 
for train_index,test_index in splitter.split(housing,housing['income_cat']): 
  train_set=housing.iloc[train_index] 
  test_set=housing.iloc[test_index] 
  strat_splits.append([train_set,test_set]) 
 
 

Exploratory data analysis 
Exploratory data analysis is one of the basic and essential steps of a data science project. 
A data scientist involves almost 70% of his work in doing the EDA of the dataset. In this 
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article, we will discuss what is Exploratory Data Analysis (EDA) and the steps to 
perform EDA. Key aspects of EDA include: 

• Distribution of Data: Examining the distribution of data points to 
understand their range, central tendencies (mean, median), and dispersion 
(variance, standard deviation). 

• Graphical Representations: Utilizing charts such as histograms, box plots, 
scatter plots, and bar charts to visualize relationships within the data and 
distributions of variables. 

• Outlier Detection: Identifying unusual values that deviate from other data 
points. Outliers can influence statistical analyses and might indicate data 
entry errors or unique cases. 

• Correlation Analysis: Checking the relationships between variables to 
understand how they might affect each other. This includes computing 
correlation coefficients and creating correlation matrices. 

• Handling Missing Values: Detecting and deciding how to address missing 
data points, whether by imputation or removal, depending on their impact 
and the amount of missing data. 

• Summary Statistics: Calculating key statistics that provide insight into data 
trends and nuances 

 
Code for EDA using scatter plot of geography 
housing1=train_set.copy() 
housing1.plot(kind="scatter",x="longitude",y="latitude",grid=True) 
plt.show() 

 
housing1.plot(kind="scatter",x="longitude",y="latitude",grid=True,alpha=0.2) 
plt.show() 
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Population and expensive relationship 
housing1.plot(kind="scatter",x="longitude",y="latitude",grid=True, 
s=housing1["population"]/100,label="population", 
c="median_house_value",cmap="jet",colorbar=True,figsize=(10,7)) 
plt.show() 

 
#Studying correlation 
Correlation is a key statistical concept that researchers employ to analyze connections 
within their data. It helps us to Understand the Relationship Between Variables. Knowing 
the correlation helps uncover important relationships between elements we are 
investigating. It provides insight into how changes in one variable may correlate with or 
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predict changes in another. As researchers we rely on correlation to better understand the 
links between different phenomena. 
The correlation coefficient quantifies the strength and direction of the correlation. Values 
closer to 1 or -1 represent stronger correlations, while those closer to 0 indicate little 
connection between the variables. 
Code for correlation 
housing2=housing1.drop(['ocean_proximity','income_cat'],axis=1) 
corr_matrix=housing2.corr() 
#Correlation with target attributes 
corr_matrix["median_house_value"].sort_values(ascending=False) 
Output:  
median_house_value    1.000000 
median_income         0.688380 
total_rooms           0.137455 
housing_median_age    0.102175 
households            0.071426 
total_bedrooms        0.054635 
population           -0.020153 
longitude            -0.050859 
latitude             -0.139584 
Name: median_house_value, dtype: float64 
Hence target attribute median_house_value is highly correlated to median_income 
 
Feature Engineering 
Feature engineering is the process of transforming raw data into features that are 
suitable for machine learning models. In other words, it is the process of selecting, 
extracting, and transforming the most relevant features from the available data to build 
more accurate and efficient machine learning models. 
The success of machine learning models heavily depends on the quality of the features 
used to train them. Feature engineering involves a set of techniques that enable us to 
create new features by combining or transforming the existing ones. These techniques 
help to highlight the most important patterns and relationships in the data, which in 
turn helps the machine learning model to learn from the data more effectively. 
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Code for Feature Engineering 
housing2["rooms_per_house"]=housing2["total_rooms"]/housing2["households"] 
housing2["bedrooms_ratio"]=housing2["total_bedrooms"]/housing2["total_rooms"] 
housing2["people_per_house"]=housing2["population"]/housing2["households"] 
Study their impact 
corr_matrix=housing2.corr() 
corr_matrix["median_house_value"].sort_values(ascending=False) 
 
Output: 
median_house_value    1.000000 
median_income         0.688380 
rooms_per_house       0.143663 
total_rooms           0.137455 
housing_median_age    0.102175 
households            0.071426 
total_bedrooms        0.054635 
population           -0.020153 
people_per_house     -0.038224 
longitude            -0.050859 
latitude             -0.139584 
bedrooms_ratio       -0.256397 
 
Hence new attributes are much more correlated with target attribute than the older 
features. 
 

Handling Missing data 
#Old approaches 
#Get rid of corresponding districts 
housing1.dropna(subset=["total_bedrooms"],inplace=True) 
#Get rid of corresponding column 
housing1.drop("total_bedrooms",axis=1) 
#Imputation 
median=housing1["total_bedrooms"].median() 
housing1["total_bedrooms"].fillna(median,inplace=True) 
 
New approach  
from sklearn.impute import SimpleImputer 
imputer=SimpleImputer(strategy="median") 
housing_num=housing1.select_dtypes(include=[np.number]) 
imputer.fit(housing_num) 
X=imputer.transform(housing_num) 
housing_tr=pd.DataFrame(X, 
columns=housing_num.columns,index=housing_num.index) 
housing_tr.info() 
 

Handling Text and Categorical data 
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Numerical data, as its name suggests, involves features that are only composed of 
numbers, such as integers or floating-point values. Categorical data are variables that 
contain label values rather than numeric values. The number of possible values is often 
limited to a fixed set. Categorical variables are often called nominal. 
Some examples include: 

• A “pet” variable with the values: “dog” and “cat“. 
• A “color” variable with the values: “red“, “green“, and “blue“. 
• A “place” variable with the values: “first“, “second“, and “third“. 

 
A numerical variable can be converted to an ordinal variable by dividing the range of the 
numerical variable into bins and assigning values to each bin. For example, a numerical 
variable between 1 and 10 can be divided into an ordinal variable with 5 labels with an 
ordinal relationship: 1-2, 3-4, 5-6, 7-8, 9-10. This is called discretization. 

• Nominal Variable (Categorical). Variable comprises a finite set of discrete values 
with no relationship between values. 

• Ordinal Variable. Variable comprises a finite set of discrete values with a ranked 
ordering between values. 

 
Some algorithms can work with categorical data directly. For example, a decision tree can 
be learned directly from categorical data with no data transform required (this depends 
on the specific implementation). Many machine learning algorithms cannot operate on 
label data directly. They require all input variables and output variables to be numeric. 

 
Ordinal Encoding: 
In ordinal encoding, each unique category value is assigned an integer value. This is called 
an ordinal encoding or an integer encoding and is easily reversible. Often, integer values 
starting at zero are used. 
 
Eg.  Python code to perform ordinal encoding on California housing dataset: 
housing_cat=housing[['ocean_proximity']] 
from sklearn.preprocessing import OrdinalEncoder 
ordinal_encoder=OrdinalEncoder() 
eh=ordinal_encoder.fit_transform(housing_cat) 
print(eh) 
print(ordinal_encoder.categories_) 

 
One-Hot Encoding 
For categorical variables where no ordinal relationship exists, the integer encoding may 
not be enough, at best, or misleading to the model at worst. Forcing an ordinal 
relationship via an ordinal encoding and allowing the model to assume a natural ordering 
between categories may result in poor performance or unexpected results (predictions 
halfway between categories). 
 In this case, a one-hot encoding can be applied to the ordinal representation. 
This is where the integer encoded variable is removed and one new binary variable is 
added for each unique integer value in the variable. 

 

https://en.wikipedia.org/wiki/Categorical_variable
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Eg.  Python code to perform OneHot encoding on California housing dataset: 
 
from sklearn.preprocessing import OneHotEncoder 
ohe=OneHotEncoder() 
oo=ohe.fit_transform(housing_cat) 
print(oo) 

 
Feature Scaling and Transformation 
Oftentimes, we have datasets in which different columns have different units – like one 
column can be in kilograms, while another column can be in centimeters. Furthermore, 
we can have columns like income which can range from 20,000 to 100,000, and even 
more; while an age column which can range from 0 to 100(at the most). Thus, Income is 
about 1,000 times larger than age. 
 When we feed these features to the model as is, there is every chance that the 
income will influence the result more due to its larger value. But this doesn’t necessarily 
mean it is more important as a predictor. So, to give importance to both Age, and Income, 
we need feature scaling. 

 
MinMax Scaler 
The MinMax scaler is one of the simplest scalers to understand.  It just scales all the data 
between 0 and 1. The formula for calculating the scaled value is- 
x_scaled = (x – x_min)/(x_max – x_min) 
Thus, a point to note is that it does so for every feature separately. Though (0, 1) is the 
default range, we can define our range of max and min values as well. 
 
#Eg Python code for MinMax Scaling 
from sklearn.preprocessing import MinMaxScaler 
mms=MinMaxScaler(feature_range=(-1,1)) 
hnm=mms.fit_transform(housing_num) 
 

Standard Scaler 
Just like the MinMax Scaler, the Standard Scaler is another popular scaler that is very easy 
to understand and implement. 
For each feature, the Standard Scaler scales the values such that the mean is 0 and the 
standard deviation is 1(or the variance). 
x_scaled = x – mean/std_dev 
However, Standard Scaler assumes that the distribution of the variable is normal 
 
#Eg Python code for MinMax Scaling 
from sklearn.preprocessing import StandardScaler 
ss=StandardScaler() 
snm=ss.fit_transform(housing_num) 

 
 
Custom Transformer 
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Consider this situation – Suppose you have your own Python function to transform the 
data. Sklearn also provides the ability to apply this transform to our dataset using what 
is called a FunctionTransformer. Let us take a simple example. I have a feature 
transformation techniques that involves taking (log to the base 2) of the values. In 
NumPy, there is a function called log2 which does that for us. Thus, we can now apply the 
FunctionTransformer: 
from sklearn.preprocessing import FunctionTransformer 
transformer = FunctionTransformer(np.log2, validate = True) 
 
df_scaled[col_names] = transformer.transform(features.values) 
df_scaled 
Here is the output with log-base 2 applied on Age and Income: 

 
 
Transformation Pipelines 
A machine learning pipeline is used to help automate machine learning workflows. They 
operate by enabling a sequence of data to be transformed and correlated together in a 
model that can be tested and evaluated to achieve an outcome, whether positive or 
negative. 
 Machine learning (ML) pipelines consist of several steps to train a model. 
Machine learning pipelines are iterative as every step is repeated to continuously 
improve the accuracy of the model and achieve a successful algorithm. To build better 
machine learning models, and get the most value from them, accessible, scalable and 
durable storage solutions are imperative, paving the way for on-premises object storage. 
 
Need of ML pipelines: 

1. The main objective of having a proper pipeline for any ML model is to exercise 
control over it. A well-organised pipeline makes the implementation more flexible.  

2. The term ML model refers to the model that is created by the training process. 
3. The learning algorithm finds patterns in the training data that map the input data 

attributes to the target (the answer to be predicted), and it outputs an ML model 
that captures these patterns. 

4. A model can have many dependencies and to store all the components to make 
sure all features available both offline and online for deployment, all the 
information is stored in a central repository. 

5. A pipeline consists of a sequence of components which are a compilation of 
computations. Data is sent through these components and is manipulated with the 
help of computation. 

https://www.analyticsvidhya.com/blog/2022/01/a-guide-to-understand-machine-learning-pipeline-with-case-study/?utm_source=Backlink&utm_medium=SEO
https://www.analyticsvidhya.com/blog/2022/01/a-guide-to-understand-machine-learning-pipeline-with-case-study/?utm_source=Backlink&utm_medium=SEO
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Eg Python code for creating pipelines in ML – Numerical data 
from sklearn.pipeline import Pipeline 
nump=Pipeline([ 
    ("impute",SimpleImputer(strategy="median")), 
    ("standardize",StandardScaler()) 
]) 
hnump=nump.fit_transform(housing_num) 
hnump[:2].round(2) 
 
Eg Python code for creating pipelines in ML- Categorical and Numerical data 
from sklearn.compose import ColumnTransformer 
from sklearn.pipeline import make_pipeline 
na=["longitude","latitude","housing_median_age","total_rooms","total_bedrooms","popu
lation","households","median_income"] 
ca=["ocean_proximity"] 
catp=make_pipeline( 
    SimpleImputer(strategy="most_frequent"), 
    OneHotEncoder() 
) 
prep=ColumnTransformer([ 
    ("num",nump,na), 
    ("cat",catp,ca)] 
) 
hp=prep.fit_transform(housing) 
 

 
Select and Train a model 
Linear Model: 
from sklearn.linear_model import LinearRegression 
lr=make_pipeline(prep,LinearRegression()) 
housing=strat_train_set.drop("median_house_value",axis=1) 
housing_labels=strat_train_set["median_house_value"].copy() 
lr.fit(housing,housing_labels) 
hpred=lr.predict(housing) 
 
Non-Linear Model: 
from sklearn.metrics import mean_squared_error 
lrmse=mean_squared_error(housing_labels,hpred,squared=False) 
print(lrmse) 
from sklearn.tree import DecisionTreeRegressor 
treg=make_pipeline(prep,DecisionTreeRegressor()) 
treg.fit(housing,housing_labels) 
hpred=treg.predict(housing) 
from sklearn.metrics import mean_squared_error 
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lrmse=mean_squared_error(housing_labels,hpred,squared=False) 
print(lrmse) 
 

Cross Validation in Machine Learning 
Cross validation is a technique used in machine learning to evaluate the performance of 
a model on unseen data. It involves dividing the available data into multiple folds or 
subsets, using one of these folds as a validation set, and training the model on the 
remaining folds. This process is repeated multiple times, each time using a different fold 
as the validation set. Finally, the results from each validation step are averaged to 
produce a more robust estimate of the model’s performance. 
 The main purpose of cross validation is to prevent overfitting, which occurs 
when a model is trained too well on the training data and performs poorly on new, unseen 
data. By evaluating the model on multiple validation sets, cross validation provides a 
more realistic estimate of the model’s generalization performance, i.e., its ability to 
perform well on new, unseen data. 
 
Eg Python code to demonstrate cross validation 
from sklearn.model_selection import cross_val_score 
trmses=-
cross_val_score(treg,housing,housing_labels,scoring="neg_root_mean_squared_error",cv
=10) 
from sklearn.ensemble import RandomForestRegressor 
freg=make_pipeline(prep,RandomForestRegressor()) 
freg.fit(housing,housing_labels) 
frmses=-
cross_val_score(freg,housing,housing_labels,scoring="neg_root_mean_squared_error",cv
=10) 
 
 

Randomized and Grid Search for Hyperparameter optimization 
Hyperparameters are the parameters that determine the behavior and performance of a 
machine-learning model. These parameters are not learned during training but are 
instead set prior to training. The process of finding the optimal values for these 
hyperparameters is known as hyperparameter optimization. 
 Grid search is a method for hyperparameter optimization that involves 
specifying a list of values for each hyperparameter that you want to optimize, and then 
training a model for each combination of these values. For example, if you want to 
optimize two hyperparameters, alpha and beta, with grid search, you would specify a list 
of values for alpha and a separate list of values for the beta. The grid search algorithm 
would then train a model using every combination of these values and evaluate the 
performance of each model. The optimal values for the hyperparameters are then chosen 
based on the performance of the models. 
 
Eg Python code for GridSearch 
from sklearn.model_selection import GridSearchCV  
 

https://www.geeksforgeeks.org/overfitting-and-regularization-in-ml/
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# Define the hyperparameters and their possible values  
param_grid = {  
 'alpha': [0.01, 0.1, 1.0, 10.0],  
 'beta': [0.01, 0.1, 1.0, 10.0]  
}  
 
# Create a model  
model = SomeModel()  
 
# Use grid search to find the optimal hyperparameters  
grid_search = GridSearchCV(model, param_grid)  
grid_search.fit(X, y)  
 
# Print the optimal values for the hyperparameters  
print(grid_search.best_params_) 
Randomized search is another method for hyperparameter optimization that can be more 
efficient than grid search in some cases. With randomized search, instead of specifying a 
list of values for each hyperparameter, you specify a distribution for each 
hyperparameter. The randomized search algorithm will then sample values for each 
hyperparameter from its corresponding distribution and train a model using the sampled 
values. This process is repeated a specified number of times, and the optimal values for 
the hyperparameters are chosen based on the performance of the models. 
 
Eg Python code for Randomized Search 
from sklearn.model_selection import RandomizedSearchCV  
from scipy.stats import uniform  
 
# Define the hyperparameters and their distributions  
param_distributions = {  
 'alpha': uniform(0.01, 10.0),  
 'beta': uniform(0.01, 10.0)  
}  
 
# Create a model  
model = SomeModel()  
 
# Use randomized search to find the optimal hyperparameters  
random_search = RandomizedSearchCV(model,  
       
 param_distributions)  
random_search.fit(X, y)  
 
# Print the optimal values for the hyperparameters  
print(random_search.best_params_) 
 
 
Advantages of Randomized Search over Grid Search: 
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One advantage of RandomizedSearchCV over GridSearchCV is that 
RandomizedSearchCV can be more efficient if the search space is large since it only 
samples a subset of the possible combinations rather than evaluating them all. This can 
be especially useful if the model is computationally expensive to fit, or if the 
hyperparameters have continuous values rather than discrete ones.  

Another advantage of RandomizedSearchCV is that it can be more robust to the 
risk of overfitting since it does not exhaustively search the entire search space. If the 
hyperparameter search space is very large and the model is relatively simple, it is 
possible that GridSearchCV could overfit to the training data by finding a set of 
hyperparameters that works well on the training set but not as well on unseen data. 
RandomizedSearchCV can help mitigate this risk by sampling randomly from the search 
space rather than evaluating every combination. 
 

 
 
 
 

MODULE II: 
 

Classification 
The Classification algorithm is a Supervised Learning technique that is used to identify 
the category of new observations on the basis of training data. In Classification, a program 
learns from the given dataset or observations and then classifies new observation into a 
number of classes or groups. Such as, Yes or No, 0 or 1, Spam or Not Spam, cat or dog, etc. 
Classes can be called as targets/labels or categories. 
Unlike regression, the output variable of Classification is a category, not a value, such as 
"Green or Blue", "fruit or animal", etc. Since the Classification algorithm is a Supervised 
learning technique, hence it takes labeled input data, which means it contains input with 
the corresponding output. 

 

MNIST dataset 
The MNIST database (Modified National Institute of Standards and Technology database) 
is a large collection of handwritten digits. It has a training set of 60,000 examples, and a 
test set of 10,000 examples. It is a subset of a larger NIST Special Database 3 (digits 
written by employees of the United States Census Bureau) and Special Database 1 (digits 
written by high school students) which contain monochrome images of handwritten 
digits. The digits have been size-normalized and centered in a fixed-size image. The 
original black and white (bilevel) images from NIST were size normalized to fit in a 20x20 
pixel box while preserving their aspect ratio. The resulting images contain grey levels as 
a result of the anti-aliasing technique used by the normalization algorithm. the images 
were centered in a 28x28 image by computing the center of mass of the pixels, and 
translating the image so as to position this point at the center of the 28x28 field. 
 
Programming snippet to interact with MNIST dataset 
 
from sklearn.datasets import fetch_openml 

https://www.geeksforgeeks.org/underfitting-and-overfitting-in-machine-learning/
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mnist=fetch_openml("mnist_784",as_frame=False ) 
#as_frame=False as we need to process image as numpy arrays 
 
#extracting features and target 
x,y=mnist.data,mnist.target 
 
#split dataset into train and test 
xtrain,xtest,ytrain,ytest=x[:60000],x[60000:],y[:60000],y[60000:] 
 
#Code to display a digit 
import matplotlib.pyplot as plt 
def show_digit(img): 
  imgdata=img.reshape(28,28) 
  plt.imshow(imgdata,cmap="binary") 
 
show_digit(x[1]) 
 
 

Training a Binary Classifier 
In a binary classification task, the goal is to classify the input data into two mutually 
exclusive categories. The training data in such a situation is labeled in a binary format: 
true and false; positive and negative; 0 and 1; spam and not spam, etc. depending on the 
problem being tackled. For instance, we might want to detect whether a given image is a 
truck or a boat. Logistic Regression and Support Vector Machines algorithms are natively 
designed for binary classifications. However, other algorithms such as K-Nearest 
Neighbors and Decision Trees can also be used for binary classification.  
 
Python code for a binary classifier for digits (5 or not-5) 
ytrain5=(ytrain=='5') 
ytest5=(ytest=='5') 
from sklearn.linear_model import SGDClassifier 
sg=SGDClassifier() 
sg.fit(xtrain,ytrain5) 
sg.predict([x[1]]) 
 
 

Performance Measures of Binary classifiers 
 
Crossvalidation 
  Cross validation is a technique used in machine learning to evaluate the performance 
of a model on unseen data. It involves dividing the available data into multiple folds or 
subsets, using one of these folds as a validation set, and training the model on the 
remaining folds. This process is repeated multiple times, each time using a different fold 
as the validation set. Finally, the results from each validation step are averaged to 
produce a more robust estimate of the model’s performance. The main purpose of cross 
validation is to prevent overfitting, which occurs when a model is trained too well on 
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the training data and performs poorly on new, unseen data. By evaluating the model on 
multiple validation sets, cross validation provides a more realistic estimate of the 
model’s generalization performance, i.e., its ability to perform well on new, unseen data. 
 
#Python code for cross-validation on digit binary classifier that computes 
accuracy of classification 
from sklearn.model_selection import cross_val_score 
cross_val_score(sg,xtrain,ytrain5,cv=3,scoring='accuracy') 
 
#Python code for prediction with cross validation 
from sklearn.model_selection import cross_val_predict 
ypred=cross_val_predict(sg,xtrain,ytrain5,cv=3) 
 
 
Confusion Matrix 
A confusion matrix is a matrix that summarizes the performance of a machine learning 
model on a set of test data. It is a means of displaying the number of accurate and 
inaccurate instances based on the model’s predictions. It is often used to measure the 
performance of classification models, which aim to predict a categorical label for each 
input instance. 
The matrix displays the number of instances produced by the model on the test data. 

• True positives (TP): occur when the model accurately predicts a positive 
data point. 

• True negatives (TN): occur when the model accurately predicts a negative 
data point. 

• False positives (FP): occur when the model predicts a positive data point 
incorrectly. 

• False negatives (FN): occur when the model mispredicts a negative data 
point. 

 
Table for confusion matrix 

Actual Predicted 
Non-5  5 

Non-5 TN FP 
5 FN TP 

 
#Python code to generate Confusion matrix 
from sklearn.metrics import confusion_matrix 
cm=confusion_matrix(ytrain5,ypred) 
print(cm) 
 
Precision 
Precision is defined as the ratio of correctly classified positive samples (True Positive) to 
a total number of classified positive samples (either correctly or incorrectly). 

Precision = True Positive/True Positive + False Positive   
Precision = TP/TP+FP   
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precision helps us to visualize the reliability of the machine learning model in classifying 
the model as positive 
 
Recall 
The recall is calculated as the ratio between the numbers of Positive samples correctly 
classified as Positive to the total number of Positive samples. The recall measures the 
model's ability to detect positive samples. The higher the recall, the more positive 
samples detected. 

Recall = True Positive/True Positive + False Negative   
Recall = TP/TP+FN   

Unlike Precision, Recall is independent of the number of negative sample classifications. 
Further, if the model classifies all positive samples as positive, then Recall will be 1. 
 
#Python code for precision and recall 
from sklearn.metrics import precision_score,recall_score,f1_score 
precision_score(ytrain5,ypred) 
recall_score(ytrain5,ypred) 
 
 
 
 
Difference between Precision and Recall in Machine Learning 

Precision Recall 

It helps us to measure the ability to 
classify positive samples in the model. 

It helps us to measure how many 
positive samples were correctly 
classified by the ML model. 

While calculating the Precision of a 
model, we should consider both 
Positive as well as Negative samples 
that are classified. 

While calculating the Recall of a model, 
we only need all positive samples while 
all negative samples will be neglected. 

When a model classifies most of the 
positive samples correctly as well as 
many false-positive samples, then the 
model is said to be a high recall and low 
precision model. 

When a model classifies a sample as 
Positive, but it can only classify a few 
positive samples, then the model is said 
to be high accuracy, high precision, and 
low recall model. 

The precision of a machine learning 
model is dependent on both the 
negative and positive samples. 

Recall of a machine learning model is 
dependent on positive samples and 
independent of negative samples. 

In Precision, we should consider all 
positive samples that are classified as 
positive either correctly or incorrectly. 

The recall cares about correctly 
classifying all positive samples. It does 



 

  

DEPT. OF AIML , JNNCE 47 

 
 

MACHINE LEARNING STUDY MATERIAL, 

not consider if any negative sample is 
classified as positive. 

 
F1-score 
Precision and recall offer a trade-off, i.e., one metric comes at the cost of another. More 
precision involves a harsher critic (classifier) that doubts even the actual positive samples from 
the dataset, thus reducing the recall score. On the other hand, more recall entails a lax critic that 
allows any sample that resembles a positive class to pass, which makes border-case negative 
samples classified as “positive,” thus reducing the precision. Ideally, we want to maximize both 
precision and recall metrics to obtain the perfect classifier. 
 
The F1 score combines precision and recall using their harmonic mean, and maximizing the F1 
score implies simultaneously maximizing both precision and recall. Thus, the F1 score has 
become the choice of researchers for evaluating their models in conjunction with accuracy. 
The F1 score is calculated as the harmonic mean of the precision and recall scores, as shown 
below. It ranges from 0-100%, and a higher F1 score denotes a better quality classifier. 

 
 
#API for f1-score 
f1_score(ytrain5,ypred) 

Precision-recall trade-off  
The classification threshold is an important parameter when building and evaluating 
classification models. It can significantly impact the model's performance and the 
decisions made based on its predictions. 
A typical default choice is to use a threshold of 0.5.  
In the spam example, that would mean that any email with a predicted probability greater 
than 0.5 is classified as spam and put in a spam folder. Any email with a predicted 
probability of less than or equal to 0.5 is classified as legitimate. 
Each metric has its limitations. Precision prioritizes “correctness” but may not account 
for the cost of missing positive cases. Recall emphasizes “completeness” but may result 
in falsely flagging some instances. Both types of errors can be expensive, depending on 
the specific use case. Since precision and recall measure different aspects of the model 
quality, this leads to the precision-recall trade-off. You must balance their importance 
and account for it when training and evaluating ML models. 
To balance precision and recall, you should consider the costs of false positives and false 
negatives errors. This is highly custom and depends on the business context. You might 
make different choices when solving the same problem in different companies. 
 
Optimize for recall 
Say your task is to score the customers likely to buy a particular product. You then pass 
this list of high-potential customers to a call center team to contact them. You might have 
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thousands of customers registering on your website every week, and the call center 
cannot reach all of them. But they can easily reach a couple of hundred.  
Every customer that buys the product will make an effort well worth it. In this scenario, 
the cost of false positives is low (just a quick call that does not result in a purchase), but 
the value of true positives is high (immediate revenue).  
In this case, you'd likely optimize for recall. You want to make sure you reach all potential 
buyers. Your only limit is the number of people your call center can contact weekly. In 
this case, you can set a lower decision threshold. Your model might have low 
precision, but this is not a big deal as long as you reach your business goals and make a 
certain number of sales.   
 
Optimize for precision 
Let's say you are working for a food delivery company. Your team is developing a machine 
learning model to predict which orders might be delivered in under 20 minutes based on 
factors such as order size, restaurant location, time of day, and delivery distance. 
You will use this prediction to display a "fast delivery" label next to a potential order. 
In this case, optimizing for precision makes sense. False positives (orders predicted to be 
completed fast but actually delayed) can result in a loss of customer trust and ultimately 
lead to decreased sales. On the other hand, false negatives (orders predicted to take 
longer but completed in under 20 minutes) will likely have no consequences at all, as the 
customer would simply be pleasantly surprised by the fast delivery. Optimizing for 
precision typically means setting a higher classification threshold. 
 
Balance precision and recall 
consider a scenario where you are developing a model to detect fraudulent transactions 
in a banking system. In this case, the cost of false positives is high, as it can lead to 
blocking legitimate transactions and causing inconvenience to the customers. On the 
other hand, the cost of false negatives is also significant, as it can result in financial loss 
and lost trust due to fraudulent transactions. 
In this case, you need to strike a balance between precision and recall. While you need to 
detect as many fraudulent transactions as possible (high recall), you must also ensure 
that you don't flag legitimate transactions as fraudulent too often (high precision). The 
threshold for detecting a fraudulent transaction must be set carefully, considering the 
costs associated with both types of errors. 
Since the fraud cost can differ, you can also set different thresholds based on the 
transaction amounts. For example, you can set a lower decision threshold for high-
volume transactions since they come with a higher potential financial loss. For smaller 
amounts (which are also more frequent), you can set the threshold higher to ensure you 
do not inconvenience customers too much.  
 

Precision-recall curve 
One approach is the precision-recall curve. It shows the value pairs between precision 
and recall at different thresholds.  
#Code for precision-recall curve 
yscores=cross_val_predict(sg,xtrain,ytrain5,cv=3, 
                        method='decision_function') 
from sklearn.metrics import precision_recall_curve 
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p,r,t=precision_recall_curve(ytrain5,yscores) 
plt.plot(t,p[:-1],label="T vs P") 
plt.plot(t,r[:-1],label="T vs R") 
plt.vlines(3000,0,1.0,"k","dotted",label="threshold line") 
plt.show() 
Output: 

 
An ROC curve (receiver operating characteristic curve) is a graph showing the 
performance of a classification model at all classification thresholds. This curve plots two 
parameters: 

• True Positive Rate 
• False Positive Rate 

An ROC curve plots TPR vs. FPR at different classification thresholds. Lowering the 
classification threshold classifies more items as positive, thus increasing both False 
Positives and True Positives.  
#Python code for ROC curve 
from sklearn.metrics import roc_curve 
fpr,tpr,t=roc_curve(ytrain5,yscores) 
plt.plot(fpr,tpr,label="FPR vs TPR") 
plt.show() 
Output: 
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AUC: Area Under the ROC Curve 
AUC stands for "Area under the ROC Curve." That is, AUC measures the entire two-
dimensional area underneath the entire ROC curve (think integral calculus) from (0,0) to 
(1,1). 
AUC provides an aggregate measure of performance across all possible classification 
thresholds. One way of interpreting AUC is as the probability that the model ranks a 
random positive example more highly than a random negative example. AUC is desirable 
for the following two reasons: 

• AUC is scale-invariant. It measures how well predictions are ranked, rather than 
their absolute values. 

• AUC is classification-threshold-invariant. It measures the quality of the model's 
predictions irrespective of what classification threshold is chosen. 

#Python code for AUC  
from sklearn.metrics import roc_auc_score 
a=roc_auc_score(ytrain5,yscores) 
print(a) 
 

Multiclass classification 
Binary classification are those tasks where examples are assigned exactly one of two 
classes. Multi-class classification is those tasks where examples are assigned exactly one 
of more than two classes. 

• Binary Classification: Classification tasks with two classes. 
• Multi-class Classification: Classification tasks with more than two classes. 

Some algorithms are designed for binary classification problems. Examples include: 
• Logistic Regression 
• Perceptron 
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• Support Vector Machines 
As such, they cannot be used for multi-class classification tasks, at least not directly. 
Instead, heuristic methods can be used to split a multi-class classification problem into 
multiple binary classification datasets and train a binary classification model each. 
Two examples of these heuristic methods include: 

• One-vs-Rest (OvR) 
• One-vs-One (OvO) 

 
One-Vs-Rest for Multi-Class Classification 
One-vs-rest (OvR for short, also referred to as One-vs-All or OvA) is a heuristic method 
for using binary classification algorithms for multi-class classification. 
It involves splitting the multi-class dataset into multiple binary classification problems. A 
binary classifier is then trained on each binary classification problem and predictions are 
made using the model that is the most confident. 
For example, given a multi-class classification problem with examples for each class ‘red,’ 
‘blue,’ and ‘green‘. This could be divided into three binary classification datasets as 
follows: 

• Binary Classification Problem 1: red vs [blue, green] 
• Binary Classification Problem 2: blue vs [red, green] 
• Binary Classification Problem 3: green vs [red, blue] 

A possible downside of this approach is that it requires one model to be created for each 
class. For example, three classes requires three models. This could be an issue for large 
datasets (e.g. millions of rows), slow models (e.g. neural networks), or very large 
numbers of classes (e.g. hundreds of classes). 
#Python code for One-Vs-Rest 
from sklearn.multiclass import OneVsRestClassifier 
oc=OneVsRestClassifier(SVC()) 
oc.fit(xtrain[:2000],ytrain[:2000]) 
oc.predict([x[0]]) 
oc.decision_function([x[0]]).round(2) 
 
One-Vs-One for Multi-Class Classification 
One-vs-One (OvO for short) is another heuristic method for using binary classification 
algorithms for multi-class classification. 
Like one-vs-rest, one-vs-one splits a multi-class classification dataset into binary 
classification problems. Unlike one-vs-rest that splits it into one binary dataset for each 
class, the one-vs-one approach splits the dataset into one dataset for each class versus 
every other class. 
For example, consider a multi-class classification problem with four classes: ‘red,’ ‘blue,’ 
and ‘green,’ ‘yellow.’ This could be divided into six binary classification datasets as 
follows: 

• Binary Classification Problem 1: red vs. blue 
• Binary Classification Problem 2: red vs. green 
• Binary Classification Problem 3: red vs. yellow 
• Binary Classification Problem 4: blue vs. green 
• Binary Classification Problem 5: blue vs. yellow 
• Binary Classification Problem 6: green vs. yellow 
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The formula for calculating the number of binary datasets, and in turn, models, is as 
follows: 

• (NumClasses * (NumClasses – 1)) / 2 
Classically, this approach is suggested for support vector machines (SVM) and related 
kernel-based algorithms. This is believed because the performance of kernel methods 
does not scale in proportion to the size of the training dataset and using subsets of the 
training data may counter this effect. 
#Python code for One-Vs-One approach 
from sklearn.svm import SVC 
sc=SVC() 
sc.fit(xtrain[:2000],ytrain[:2000]) 
sc.predict([x[0]]) 
sds=sc.decision_function([x[0]]) 
sds.round(2) 
classid=sds.argmax() 
classid 
 

Error Analysis 
Error analysis is the process to isolate, observe and diagnose erroneous ML 
predictions thereby helping understand pockets of high and low performance of the 
model. When it is said that “the model accuracy is 90%” it might not be uniform across 
subgroups of data and there might be some input conditions which the model fails 
more. 
#Python code to display number of correct and wrong digit classifications  
from sklearn.model_selection import cross_val_predict 
from sklearn.metrics import ConfusionMatrixDisplay 
ypred=cross_val_predict(sc,xtrain,ytrain,cv=3) 
ConfusionMatrixDisplay.from_predictions(ytrain,ypred) 
 
Output: 
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#Python code to display normalized errors 
ConfusionMatrixDisplay.from_predictions(ytrain,ypred,normalize="true",values_format
=".0%") 
plt.show() 

 
#Python code to zoom-up the major error classifications 
sample_weight=(ypred!=ytrain) 
ConfusionMatrixDisplay.from_predictions(ytrain,ypred,normalize="true",sample_weigh
t=sample_weight,values_format=".0%") 
plt.show() 
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Multilabel classification: 
It is used when there are two or more classes and the data we want to classify may 
belong to none of the classes or all of them at the same time, e.g. to classify which traffic 
signs are contained on an image. In multi-label classification, the training set is composed 
of instances each associated with a set of labels, and the task is to predict the label sets of 
unseen instances through analyzing training instances with known label sets. 
Difference between multi-class classification & multi-label classification is that in multi-
class problems the classes are mutually exclusive, whereas for multi-label problems each 
label represents a different classification task, but the tasks are somehow related. 
For example, multi-class classification makes the assumption that each sample is assigned 
to one and only one label: a fruit can be either an apple or a pear but not both at the same 
time. Whereas, an instance of multi-label classification can be that a text might be about 
any of religion, politics, finance or education at the same time or none of these. 
 

Multioutput Algorithms 
Multioutput algorithms are a type of machine learning approach designed for problems 
where the output consists of multiple variables, and each variable can belong to a 
different class or have a different range of values. In other words, multioutput problems 
involve predicting multiple dependent variables simultaneously. 
Two main types of Multioutput Problems: 

• Multioutput Classification: In multioutput classification, each instance is 
associated with a set of labels and the goal is to predict these labels 
simultaneously. 

• Multioutput Regression: In multioutput regression, the task is to predict 
multiple continuous variables simultaneously. 

 
 
 
 
 

https://www.geeksforgeeks.org/multiclass-classification-using-scikit-learn/
https://www.geeksforgeeks.org/multioutput-regression-in-machine-learning/
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MODULE-III 
 

Linear Regression 
Linear regression is a type of supervised machine learning algorithm that computes the 
linear relationship between the dependent variable and one or more independent 
features by fitting a linear equation to observed data. Linear regression is not merely a 
predictive tool; it forms the basis for various advanced models. Techniques like 
regularization and support vector machines draw inspiration from linear regression, 
expanding its utility. Additionally, linear regression is a cornerstone in assumption 
testing, enabling researchers to validate key assumptions about the data. 
 
Linear regression model prediction: 

 
Linear Regression model prediction (vectorized form) 

 
MSE cost function for a Linear Regression model 

 
Normal Equation 

 
#Python code to predict Linear regression using Normal Equation 
import numpy as np 
n=100 
x=2*np.random.randn(n,1) 
y=4+3*x+np.random.randn(n,1) 
from sklearn.preprocessing import add_dummy_feature 
x1=add_dummy_feature(x) 
theta=np.linalg.inv(x1.T@x1)@x1.T@y 
xnew=np.array([[0],[2]]) 
xnew1=add_dummy_feature(xnew) 
ypred=xnew1@theta 

https://www.geeksforgeeks.org/supervised-machine-learning/
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ypred 
 
 
#Python code to perform Linear Regression based on the library function 
from sklearn.linear_model import LinearRegression 
lr=LinearRegression() 
lr.fit(x,y) 
print(lr.intercept_, lr.coef_) 
 

Gradient Descent (GD)  
It is a widely used optimization algorithm in machine learning and deep learning that 
minimises the cost function of a neural network model during training. It works by 
iteratively adjusting the weights or parameters of the model in the direction of the 
negative gradient of the cost function until the minimum of the cost function is reached. 
The learning happens during the backpropagation while training the neural network-
based model. There is a term known as Gradient Descent, which is used to optimize the 
weight and biases based on the cost function. The cost function evaluates the difference 
between the actual and predicted outputs. 
Gradient Descent is a fundamental optimization algorithm in machine learning used to 
minimize the cost or loss function during model training. 

• It iteratively adjusts model parameters by moving in the direction of the 
steepest decrease in the cost function. 

• The algorithm calculates gradients, representing the partial derivatives of 
the cost function concerning each parameter. 

These gradients guide the updates, ensuring convergence towards the optimal 
parameter values that yield the lowest possible cost. 
Gradient Descent is versatile and applicable to various machine learning models, 
including linear regression and neural networks. 
 
The path of Gradient descent is depicted in the following figure: 

https://www.geeksforgeeks.org/backpropagation-in-data-mining/
https://www.geeksforgeeks.org/gradient-descent-in-linear-regression/
https://www.geeksforgeeks.org/machine-learning/
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Impact of Learning rate: 
If the learning rate is too small, then the algorithm will have to go through many iterations 
to converge, which will take a long time: 

 
On the other hand, if the learning rate is too high, you might jump across the valley and 
end up on the other side, possibly even higher up than you were before. This might make 
the algorithm diverge, with larger and larger values, failing to find a good solution 
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Challenges in Gradient Descent: 
if the random initialization starts the algorithm on the left, then it will converge to a local 
mini- mum, which is not as good as the global minimum. If it starts on the right, then it 
will take a very long time to cross the plateau, and if you stop too early you will never 
reach the global minimum. 

 
Impact of scaling on Gradient Descent: 
Gradient Descent on a training set where features 1 and 2 have the same scale (on the 
left), and on a training set where feature 1 has much smaller values than feature 2 (on the 
right) 
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Batch Gradient Descent 
In Batch Gradient Descent, all the training data is taken into consideration to take a single 
step. We take the average of the gradients of all the training examples and then use that 
mean gradient to update our parameters. So that’s just one step of gradient descent in one 
epoch. 
Cost function in Batch Gradient descent: 

 
Gradient vector of the cost function 

 
 
Gradient Descent step 

 
#Python code to implement Full/Batch Gradient Descent 
from sklearn.preprocessing import add_dummy_feature 
eta=0.1 
n=100 
x=2*np.random.randn(n,1) 
y=4+3*x+np.random.randn(n,1) 
x1=add_dummy_feature(x) 
m=len(x1) 
theta=np.random.randn(2,1) 
epochs=1000 
for epoch in range(epochs): 
  grad=2/m*x1.T@(x1@theta-y) 
  theta=theta-eta*grad 
theta 
 
Full/Batch Gradient Descent with various learning rates: 
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On the left, the learning rate is too low: the algorithm will eventually reach the solu- tion, 
but it will take a long time. In the middle, the learning rate looks pretty good: in just a few 
iterations, it has already converged to the solution. On the right, the learn- ing rate is too 
high: the algorithm diverges. 
 
 

Stochastic Gradient Descent 
In Batch Gradient Descent we were considering all the examples for every step of Gradient 
Descent. But what if our dataset is very huge. Deep learning models crave for data. The 
more the data the more chances of a model to be good. Suppose our dataset has 5 million 
examples, then just to take one step the model will have to calculate the gradients of all the 
5 million examples. This does not seem an efficient way. To tackle this problem we have 
Stochastic Gradient Descent. In Stochastic Gradient Descent (SGD), we consider just one 
random sample at a time to take a single step. Also because the cost is so fluctuating, it will 
never reach the minima but it will keep dancing around it. 
#Python code to implement Stochastic Gradient Descent 
from sklearn.preprocessing import add_dummy_feature 
eta=0.1 
n=100 
x=2*np.random.randn(n,1) 
y=4+3*x+np.random.randn(n,1) 
x1=add_dummy_feature(x) 
m=len(x1) 
theta=np.random.randn(2,1) 
epochs=1000 
m=len(x) 
def learning_schedule(t): 
  return 5/(50+t) 
 
for epoch in range(epochs): 
  for iteration in range(m): 
    ri=np.random.randint(m) 
    xi=x1[ri:ri+1] 
    yi=y[ri:ri+1] 
    grad=2/m*xi.T@(xi@theta-yi) 
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    eta=learning_schedule(epoch*m+iteration) 
    theta=theta-eta*grad 
theta 
 
Performance of Stochastic Gradient Descent 

 
 

Mini-batch Gradient Descent 
We have seen the Batch Gradient Descent. We have also seen the Stochastic Gradient 
Descent. Batch Gradient Descent can be used for smoother curves. SGD can be used when 
the dataset is large. Batch Gradient Descent converges directly to minima. SGD converges 
faster for larger datasets. But, since in SGD we use only one example at a time, we cannot 
implement the vectorized implementation on it. This can slow down the computations. To 
tackle this problem, a mixture of Batch Gradient Descent and SGD is used. Neither we use 
all the dataset all at once nor we use the single example at a time. We use a batch of a fixed 
number of training examples which is less than the actual dataset and call it a mini-batch. 
Doing this helps us achieve the advantages of both the former variants. 
Gradient Descent paths in parameter space 
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All algorithms end up near the minimum, but Batch GD’s path actually stops at the 
minimum, while both Stochastic GD and Mini-batch GD continue to walk around. 
However, don’t forget that Batch GD takes a lot of time to take each step, and Stochastic 
GD and Mini-batch GD would also reach the minimum if you used a good learning 
schedule. 
 

Polynomial Regression 
Polynomial regression is a type of regression analysis used in statistics and machine 
learning when the relationship between the independent variable (input) and the 
dependent variable (output) is not linear. While simple linear regression models the 
relationship as a straight line, polynomial regression allows for more flexibility by 
fitting a polynomial equation to the data. When the relationship between the variables 
is better represented by a curve rather than a straight line, polynomial regression can 
capture the non-linear patterns in the data. 
#Python code for polynomial Regression  
m=100 
import numpy as np 
x=6*np.random.randn(m,1)-3 
y=0.5*x**2+x+2+np.random.randn(m,1) 
from sklearn.preprocessing import PolynomialFeatures 
from sklearn.linear_model import LinearRegression 
pf=PolynomialFeatures(degree=2,include_bias=False) 
xpoly=pf.fit_transform(x) 
lr=LinearRegression() 
lr.fit(xpoly,y) 
lr.intercept_,lr.coef_ 
 

Learning Curves 
Learning curves are plots used to show a model's performance as the training set size 
increases. Another way it can be used is to show the model's performance over a defined 
period of time. We typically used them to diagnose algorithms that learn incrementally 
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from data. It works by evaluating a model on the training and validation datasets, then 
plotting the measured performance. 
Finding the right degree of a polynomial is a challenge and learning curves help in 
resolving it. Learning curves are the plots of training and validation error as a function of 
the training iteration. 
 
#Python code to illustrate the use of Learning curves with Linear Regression 
from sklearn.model_selection import learning_curve 
from sklearn.preprocessing import PolynomialFeatures 
from sklearn.linear_model import LinearRegression 
tsize,tscore,vscore=learning_curve(LinearRegression(),x,y, 
                        train_sizes=np.linspace(0.01,1,40), 
                        cv=5,scoring="neg_root_mean_squared_error") 
trainerr=-tscore.mean(axis=1) 
validerr=-vscore.mean(axis=1) 
import matplotlib.pyplot as plt 
plt.plot(tsize,trainerr) 
plt.plot(tsize,validerr) 
plt.legend(["train","valid"]) 
plt.show() 
#Python code to illustrate the use of Learning curves with Polynomial Regression 
from sklearn.pipeline import make_pipeline 
pr=make_pipeline(PolynomialFeatures(degree=2,include_bias=False), 
                 LinearRegression()) 
tsize,tscore,vscore=learning_curve(pr,x,y, 
                        train_sizes=np.linspace(0.01,1,40), 
                        cv=5,scoring="neg_root_mean_squared_error") 
trainerr=-tscore.mean(axis=1) 
validerr=-vscore.mean(axis=1) 
import matplotlib.pyplot as plt 
plt.plot(tsize,trainerr) 
plt.plot(tsize,validerr) 
plt.legend(["train","valid"]) 
plt.show() 
 

Regularized Linear Models 
Regularization is one of the most important concepts of machine learning. It is a 
technique to prevent the model from overfitting by adding extra information to it. 
Regularization works by adding a penalty or complexity term to the complex mode 
There are three types of regularization techniques, which are given below: 

o Ridge Regression 
o Lasso Regression 
o ElasticNet Regression 

 
Ridge Regression 

o Ridge regression is one of the types of linear regression in which a small amount 
of bias is introduced so that we can get better long-term predictions. 
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o Ridge regression is a regularization technique, which is used to reduce the 
complexity of the model. It is also called as L2 regularization. 

o In this technique, the cost function is altered by adding the penalty term to it. The 
amount of bias added to the model is called Ridge Regression penalty. We can 
calculate it by multiplying with the lambda to the squared weight of each 
individual feature. 

o The equation for the cost function in ridge regression will be: 

 

 
#Python code for Ridge Regression 
from sklearn.linear_model import Ridge  
ridge_reg = Ridge(alpha=1)  
ridge_reg.fit(X, y)  
OR 
sgd_reg = SGDRegressor(penalty="l2") 
Performance of Ridge regression for Linear and Non-linear cases: 

 
Lasso Regression 

o Lasso regression is another regularization technique to reduce the complexity of 
the model. It stands for Least Absolute and Selection Operator. 

o It is similar to the Ridge Regression except that the penalty term contains only the 
absolute weights instead of a square of weights. 

o Since it takes absolute values, hence, it can shrink the slope to 0, whereas Ridge 
Regression can only shrink it near to 0. 
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o It is also called as L1 regularization. The equation for the cost function of Lasso 
regression will be: 

 
#Python code for Lasso Regression 
from sklearn.linear_model import Lasso 
lasso_reg = Lasso(alpha=0.1)  
lasso_reg.fit(X, y) 
Performance of Lasso Regression 

 
 

Elastic Net Regression 
Elastic Net Regression is a powerful machine learning algorithm that combines the 
features of both Lasso and Ridge Regression. It is a regularized regression technique that 
is used to deal with the problems of multicollinearity and overfitting, which are common 
in high-dimensional datasets. This algorithm works by adding a penalty term to the 
standard least-squares objective function 
Cost function of Elastic net regression: 

 
#Python code for Elastic net regression: 
from sklearn.linear_model import ElasticNet 
el_reg = ElasticNet(alpha=0.1,l1_ratio=0.5)  
el_reg.fit(X, y) 
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Regularization by Early Stopping 
In Regularization by Early Stopping, we stop training the model when the performance 
on the validation set is getting worse- increasing loss decreasing accuracy, or poorer 
scores of the scoring metric. By plotting the error on the training dataset and the 
validation dataset together, both the errors decrease with a number of iterations until 
the point where the model starts to overfit. After this point, the training error still 
decreases but the validation error increases. So, even if training is continued after this 
point, early stopping essentially returns the set of parameters that were used at this 
point and so is equivalent to stopping training at that point. So, the final parameters 
returned will enable the model to have low variance and better generalization. The 
model at the time the training is stopped will have a better generalization performance 
than the model with the least training errors. 
The graph depicting the mechanism of early stopping: 

 
Early stopping can be best used to prevent overfitting of the model, and saving 
resources. It would give best results if taken care of few things like – parameter tuning, 
preventing the model from overfitting, and ensuring that the model learns enough from 
the data. 
 

Logistic Regression 
Logistic regression is a supervised machine learning algorithm used for classification 
tasks where the goal is to predict the probability that an instance belongs to a given 
class or not. Logistic regression is used for binary classification where we use sigmoid 
function, that takes input as independent variables and produces a probability value 
between 0 and 1. Logistic regression predicts the output of a categorical dependent 
variable. Therefore, the outcome must be a categorical or discrete value. It can be either 
Yes or No, 0 or 1, true or False, etc. but instead of giving the exact value as 0 and 1, it 
gives the probabilistic values which lie between 0 and 1. In Logistic regression, instead 
of fitting a regression line, we fit an “S” shaped logistic function, which predicts two 
maximum values (0 or 1). 
Estimating probabilities in Logistic Regression: 

https://www.geeksforgeeks.org/regularization-in-machine-learning/
https://www.geeksforgeeks.org/getting-started-with-classification/
https://www.geeksforgeeks.org/derivative-of-the-sigmoid-function/
https://www.geeksforgeeks.org/derivative-of-the-sigmoid-function/
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Cost function of a single training instance of Logistic Regression 

 
Logistic Regression cost function (log loss) 

 
 

Decision Boundaries 
The fundamental application of logistic regression is to determine a decision boundary for 
a binary classification problem. Although the baseline is to identify a binary decision 
boundary, the approach can be very well applied for scenarios with multiple classification 
classes or multi-class classification. 
 
#Python code to compute decision boundary for iris dataset  
from sklearn.linear_model import LogisticRegression 
from sklearn.model_selection import train_test_split 
from sklearn.datasets import load_iris 
iris=load_iris(as_frame=True) 
x=iris.data[['petal width (cm)']].values 
y=iris.target_names[iris.target]=="virginica" 
xtrain,xtest,ytrain,ytest=train_test_split(x,y,test_size=0.30) 
lr=LogisticRegression() 
lr.fit(xtrain,ytrain) 
xnew=np.linspace(0,3,1000).reshape(-1,1) 
yp=lr.predict_proba(xnew) 
decisionboundary=xnew[yp[:,1]>=0.5][0,0] 
print(decisionboundary) 
 

Softmax regression 
Softmax regression (or multinomial logistic regression) is a generalization of logistic 
regression to the case where we want to handle multiple classes in the target column. 
Softmax score for class k 
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Softmax function 

 

 
 
Softmax Regression classifier prediction 

 
The argmax operator returns the value of a variable that maximizes a function. 
Cross entropy is frequently used to measure how well a set of estimated class 
probabilities match the target classes 
Cross entropy cost function 
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MODULE IV: 
 

Decision Trees 
A decision tree is a flowchart-like structure used to make decisions or predictions. It consists 
of nodes representing decisions or tests on attributes, branches representing the outcome of 
these decisions, and leaf nodes representing final outcomes or predictions. Each internal 
node corresponds to a test on an attribute, each branch corresponds to the result of the test, 
and each leaf node corresponds to a class label or a continuous value. Decision trees are 
versatile ML algorithms used for classification, regression and multi-output classification. Also 
suitable for any complex datasets. 
 
Training and visualizing a decision tree 
#Python code to construct a decision tree classifier for Iris dataset 
from sklearn.datasets import load_iris 
from sklearn.tree import DecisionTreeClassifier 
iris=load_iris(as_frame=True) 
x=iris.data[["petal length (cm)","petal width (cm)"]].values 
y=iris.target 
treeclf=DecisionTreeClassifier(max_depth=2,criterion="entropy") 
treeclf.fit(x,y) 
 
#Creating a graphics file for decision tree 
from sklearn.tree import export_graphviz 
export_graphviz( 
    treeclf, 
    out_file="o.dot", 
    feature_names=["petal length (cm)","petal width (cm)"], 
    class_names=iris.target_names, 
    rounded=True, 
    filled=True 
) 
 
from graphviz import Source 
Source.from_file("o.dot") 
 
#Visualization result of a Decision tree 
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#Prediction result of decision tree 
❑ 𝑻𝒓𝒂𝒗𝒆𝒓𝒔𝒆 𝒕𝒉𝒆 𝒕𝒓𝒆𝒆 𝒕𝒐 𝒇𝒊𝒏𝒅 𝒍𝒆𝒂𝒇 𝒏𝒐𝒅𝒆 𝒊𝒏𝒔𝒕𝒂𝒏𝒄𝒆 
❑ Return ratio of training instances of class k in this node 

treeclf.predict_proba([[5,1.5]]).round(3 
 

Gini Impurity 
The equation for computing Gini Impurity is: 

𝑮𝒊 = 𝟏 −∑𝒑𝒊,𝒌
𝟐

𝒏

𝒌=𝟏

 

Where n-number of classes,  
A node’s gini attribute measures its Gini impurity. A node is pure if all training instances is 
pure and Gini impurity is 0. 
Eg: 
For the root node,  

Gini impurity=1-[(
50

150
)2 + (

50

150
)2 + (

50

150
)2] 

                        =1-[1/9+1/9+1/9]=1-1/3=2/3==0.6667 
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Decision tree boundaries 

 
The thick vertical line represents the decision boundary of the root node (depth 0): petal 
length = 2.45 cm. Since the left area is pure (only Iris-Setosa), it cannot be split any further. 
However, the right area is impure, so the depth-1 right node splits it at petal width = 1.75 cm 
(represented by the dashed line). Since max_depth was set to 2, the Decision Tree stops right 
there. However, if you set max_depth to 3, then the two depth-2 nodes would each add 
another decision boundary (represented by the dotted lines 
 

Whitebox and Blackbox Machine Learning models 
A white box machine learning model (White Box) is one that allows humans to easily interpret 
how it was able to produce its output and draw its conclusions, thereby giving us insight into 
the algorithm’s inner workings. White boxes are transparent in terms of: 

• How they behave 
• How they process data 
• Which variables they give weight to 
• How they generate their predictions 

Examples of such models include linear trees, decision trees, and regression trees. 
 
Black box machine learning models (Black Boxes), on the other hand, rank higher on 
innovation and accuracy, but lower on transparency and interpretability. Black Boxes produce 
output based on your input data set, but do not – and cannot – clarify how they came to those 
conclusions. So, while a user can observe the input variable and the output variable, 
everything in between related to the calculation and the process is not available. Even if it 
were, humans would not be able to understand it. 
Black Boxes tend to model extremely complex scenarios with deep and non-linear 
interactions between the data. Some examples include: 

• Deep-learning models 
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• Boosting models 
• Random forest models 

  
 

CART Training algorithm 
CART(Classification And Regression Trees) is a  variation of the decision tree algorithm. It can 
handle both classification and regression tasks. Scikit-Learn uses the Classification And 
Regression Tree (CART) algorithm to train  Decision Trees (also called “growing” trees) 
Classification and Regression Trees (CART) is a decision tree algorithm that is used for both 
classification and regression tasks. It is a supervised learning algorithm that learns from 
labelled data to predict unseen data. 

• Tree structure: CART builds a tree-like structure consisting of nodes and branches. The 
nodes represent different decision points, and the branches represent the possible 
outcomes of those decisions. The leaf nodes in the tree contain a predicted class label 
or value for the target variable. 

• Splitting criteria: CART uses a greedy approach to split the data at each node. It 
evaluates all possible splits and selects the one that best reduces the impurity of the 
resulting subsets. For classification tasks, CART uses Gini impurity as the splitting 
criterion. The lower the Gini impurity, the more pure the subset is. For regression 
tasks, CART uses residual reduction as the splitting criterion. The lower the residual 
reduction, the better the fit of the model to the data. 

• Pruning: To prevent overfitting of the data, pruning is a technique used to remove the 
nodes that contribute little to the model accuracy. Cost complexity pruning and 
information gain pruning are two popular pruning techniques. Cost complexity 
pruning involves calculating the cost of each node and removing nodes that have a 
negative cost. Information gain pruning involves calculating the information gain of 
each node and removing nodes that have a low information gain. 

 
CART algorithm Splits training dataset into two subsets using single feature k and threshold 
tk. It searches for pair (t,tk) that produces purest subsets weighted by their size. CART cost 
function for classification: 

 
 

Entropy 
• The word “entropy,” is hails from physics, and refers to an indicator of the disorder. 

The expected volume of “information,” “surprise,” or “uncertainty” associated with a 

https://www.geeksforgeeks.org/ml-classification-vs-regression/
https://www.geeksforgeeks.org/learning-model-building-scikit-learn-python-machine-learning-library/
https://www.geeksforgeeks.org/decision-tree/
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randomly chosen variable’s potential outcomes is characterized as the entropy of the 
variable in information theory. 

• Entropy is a quantifiable and measurable physical attribute and a scientific notion that 
is frequently associated with a circumstance of disorder, unpredictability, or 
uncertainty.  

• From classical thermodynamics, where it was originally identified, through the 
macroscopic portrayal of existence in statistical physics, to the principles of 
information theory, the terminology, and notion are widely used in a variety of fields 
of study 

• Entropy is defined as the randomness or measuring the disorder of the information 
being processed in Machine Learning. Further, in other words, we can say 
that entropy is the machine learning metric that measures the unpredictability or 
impurity in the system. 

 
 
Formula to compute Entropy: 

𝑯𝒊 = −∑𝒑𝒊,𝒌𝒍𝒐𝒈𝟐

𝒏

𝒌=𝟏

𝒑𝒊,𝒌 

 
 

Entropy vs Gini Impurity 
Gini Impurity Entropy 

It is the probability of misclassifying a 
randomly chosen element in a set. 

While entropy measures the amount of 
uncertainty or randomness in a set. 

The range of the Gini index is [0, 1], where 0 
indicates perfect purity and 1 indicates 
maximum impurity. 

The range of entropy is [0, log(c)], where c 
is the number of classes. 

Gini index is a linear measure. Entropy is a logarithmic measure. 

It can be interpreted as the expected error 
rate in a classifier. 

It can be interpreted as the average amount 
of information needed to specify the class 
of an instance. 

It is sensitive to the distribution of classes in 
a set. 

It is sensitive to the number of classes 

 
 

Regularization hyperparameters of Decision tree 
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The few other hyperparameters that would restrict the structure of the decision tree are: 
1. min_samples_split – Minimum number of samples a node must possess before 

splitting. 
2. min_samples_leaf – Minimum number of samples a leaf node must possess. 
3. min_weight_fraction_leaf – Minimum fraction of the sum total of weights required to 

be at a leaf node. 
4. max_leaf_nodes – Maximum number of leaf nodes a decision tree can have. 
5. max_features – Maximum number of features that are taken into the account for 

splitting each node. 
 
Regression using Decision Trees 
import numpy as np 
from sklearn.tree import DecisionTreeRegressor 
x=np.random.rand(200,1)-0.5 
y=x**2+0.025*np.random.randn(200,1) 
tr=DecisionTreeRegressor(max_depth=2) 
tr.fit(x,y) 
 
from sklearn.tree import export_graphviz 
export_graphviz( 
    tr, 
    out_file="o.dot", 
    feature_names=['X'], 
    class_names=y, 
    rounded=True, 
    filled=True 
) 
 
from graphviz import Source 
Source.from_file("o.dot") 
 
Output: 
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CART Cost function for regression: 

 
Parametric and Non-parametric machine learning models 
Machine learning models are widely classified into two types: parametric and nonparametric 
models. Models of the first category make specific hypotheses about the relationship 
between input and output data. These assumptions concern a fixed number of parameters 
and variables that impact the model’s result. Furthermore, these assumptions are associated 
with a set of parameters that must be learned during the training process. Some examples of 
parametric models in neural networks include linear or polynomial regression, which are 
straightforward models that imply that the input and output have a linear or polynomial 
relation respectively. 

The second category includes non-parametric models. These models don’t need to 
make assumptions about the relations between the input and output to generate an outcome 
and also don’t require a certain number of parameters to be set and learned. Studies have 
shown that non-parametric perform better on large datasets and are more flexible. Common 
non-parametric algorithms are the random forests or decision trees that split the input into a 
smaller space based on the data features, generating the prediction based on the class.  
 

Ensemble learning: 
Ensemble learning is a machine learning technique that enhances accuracy and resilience in 
forecasting by merging predictions from multiple models. It aims to mitigate errors or biases 
that may exist in individual models by leveraging the collective intelligence of the ensemble. 

The underlying concept behind ensemble learning is to combine the outputs of diverse 
models to create a more precise prediction. By considering multiple perspectives and utilizing 
the strengths of different models, ensemble learning improves the overall performance of the 
learning system. This approach not only enhances accuracy but also provides resilience 
against uncertainties in the data. By effectively merging predictions from multiple models, 
ensemble learning has proven to be a powerful tool in various domains, offering more robust 
and reliable forecasts. 

 
Eg:  
 

https://www.baeldung.com/cs/ml-fundamentals
https://www.baeldung.com/cs/ai-convolutional-neural-networks
https://www.baeldung.com/cs/linear-vs-logistic-regression
https://www.baeldung.com/cs/regularization-parameter-linear-regression
https://www.baeldung.com/cs/decision-trees-vs-random-forests
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Aggregating the predictions of group of predictors (regressors/classifiers) is called ensemble 
learning. 
 

Voting Classifiers 
A voting classifier is a machine learning model that gains experience by training on a collection 
of several models and forecasts an output (class) based on the class with the highest 
likelihood of becoming the output. To forecast the output class based on the largest majority 
of votes, it averages the results of each classifier provided into the voting classifier. The 
concept is to build a single model that learns from various models and predicts output based 
on their aggregate majority of votes for each output class, rather than building separate 
specialized models and determining the accuracy for each of them. 
There are primarily two different types of voting classifiers: 

• Hard Voting: In hard voting, the predicted output class is a class with the highest 
majority of votes. For example, let’s say classifiers predicted the output classes as (Cat, 
Dog, Dog). As the classifiers predicted class “dog” a maximum number of times, we 
will proceed with Dog as our final prediction. 

• Soft Voting: In this, the average probabilities of the classes determine which one will 
be the final prediction. For example, let’s say the probabilities of the class being a 
“dog” is (0.30, 0.47, 0.53) and a “cat” is (0.20, 0.32, 0.40). So, the average for a class 
dog is 0.4333, and the cat is 0.3067, from this, we can confirm our final prediction to 
be a dog as it has the highest average probability. 

Eg: 

https://www.geeksforgeeks.org/ml-voting-classifier-using-sklearn/
https://www.geeksforgeeks.org/ml-voting-classifier-using-sklearn/
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#Python code to demonstrate Hard voting classifiers 
from sklearn.datasets import make_moons 
from sklearn.ensemble import RandomForestClassifier, VotingClassifier 
from sklearn.linear_model import LogisticRegression 
from sklearn.model_selection import train_test_split 
from sklearn.svm import SVC 
x,y=make_moons(n_samples=500, noise=0.30) 
xtrain,xtest,ytrain,ytest=train_test_split(x,y) 
vcl=VotingClassifier( 
    estimators=[ 
        ('lr',LogisticRegression()), 
        ('rf',RandomForestClassifier()), 
        ('svc',SVC()), 
    ] 
) 
vcl.fit(xtrain,ytrain) 
for name,clf in vcl.named_estimators_.items(): 
  print(name,clf.score(xtest,ytest)) 
vcl.score(xtest,ytest) 
 
#Python code for softvoting classifiers 
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vcl.voting="soft" 
vcl.named_estimators["svc"].probability=True 
vcl.fit(xtrain,ytrain) 
vcl.score(xtest,ytest) 
 

Bagging and Pasting 
One way to get a diverse set of classifiers for ensemble learning is to use very different training 
algorithms. Another approach is to use the same training algorithm for every predictor and 
train them on different random subsets of the training set. When sampling is performed with 
replacement, this method is called bagging (short for bootstrap aggregating). When sampling 
is performed without replacement, it is called pasting. 

Both bagging and pasting allow training instances to be sampled several times across 
multiple predictors, but only bagging allows training instances to be sampled several times 
for the same predictor. 

Once all predictors are trained, the ensemble can make a prediction for a new instance 
by simply aggregating the predictions of all predictors. The aggregation function is typically 
the statistical mode for classification or the average for the regression. Predictors can all be 
trained in parallel, via different CPU cores. Similarly, predictions can be made in parallel. This 
is one of the reasons bagging and pasting scale very well. 

 
Eg: 

 
 
#Python code for Bagging/Pasting 
from sklearn.ensemble import BaggingClassifier  
from sklearn.tree import DecisionTreeClassifier  
bag_clf = BaggingClassifier( base_estimator=DecisionTreeClassifier(), n_estimators=500, 
max_samples=100, bootstrap=True, n_jobs=-1) 
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Bootstrapping introduces a bit more diversity in the subsets that each predictor is trained on, 
so bagging ends up with a slightly higher bias than pasting. But the extra diversity also means 
that the predictors end up being less correlated, so the ensemble’s variance is reduced. 
Overall, bagging often results in better models. 
 

Out-of-Bag Evaluation 
With bagging, some instances may be sampled several times for any given predictor, while 
others may not be sampled at all. By default, BaggingClassifier samples m training instances 
with replacement (bootstrap=True), where m is the size of the training set. This means only 
about 63% of the training instances are sampled on average for each predictor. The remaining 
37% of the training instances that are not sampled are called out-of-bag (oob) instances. 
Since a predictor never sees these instances during training, it can be evaluated on these 
instances, without the need for a separate validation set. We can evaluate the ensemble itself 
by averaging out the out-of-bag evaluations for each predictor. 
In Scikit-Learn, we can set oob_score=True when creating a BaggingClassifier to request an 
automatic oob evaluation. The resulting evaluation score is available through 
the oob_score_ variable. 
#Python code for OOB Evaluation 
bag_clf = BaggingClassifier( base_estimator=DecisionTreeClassifier(), n_estimators=500, 
max_samples=100, bootstrap=True, n_jobs=-1, oob_score=True )  
bag_clf.fit(X, y) print(bag_clf.oob_score_) 
 

Random Patches and Random Subspaces 
The BaggingClassifer class supports sampling the features as well. Sampling features is 
controlled by two hyperparameters: max_features and bootstrap_features. They work the 
same way as max_samples and bootstrap, but for feature sampling instead. Thus, each 
predictor will be trained on a random subset of the input features. 

This is very useful when we are dealing with high-dimensional inputs. Sampling both 
training instances and features is called the Random Patches method. Keeping all the training 
instances but sampling features is called the Random Subspaces method. 
 

Bias and variance in Machine Learning 
Bias is simply defined as the inability of the model because of that there is some difference or 
error occurring between the model’s predicted value and the actual value. These differences 
between actual or expected values and the predicted values are known as error or bias error 
or error due to bias. 

Variance is the measure of spread in data from its mean position. In machine learning 
variance is the amount by which the performance of a predictive model changes when it is 
trained on different subsets of the training data. More specifically, variance is the variability 
of the model that how much it is sensitive to another subset of the training dataset. i.e. how 
much it can adjust on the new subset of the training dataset. 
Different Combinations of Bias-Variance 
There can be four combinations between bias and variance. 

https://www.geeksforgeeks.org/mathematics-mean-variance-and-standard-deviation/
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• High Bias, Low Variance: A model with high bias and low variance is said to be 
underfitting. 

• High Variance, Low Bias: A model with high variance and low bias is said to be 
overfitting. 

• High-Bias, High-Variance: A model has both high bias and high variance, which means 
that the model is not able to capture the underlying patterns in the data (high bias) 
and is also too sensitive to changes in the training data (high variance). As a result, the 
model will produce inconsistent and inaccurate predictions on average. 

• Low Bias, Low Variance: A model that has low bias and low variance means that the 
model is able to capture the underlying patterns in the data (low bias) and is not too 
sensitive to changes in the training data (low variance). This is the ideal scenario for a 
machine learning model, as it is able to generalize well to new, unseen data and 
produce consistent and accurate predictions. But in practice, it’s not possible. 

 

Random Forests 
Random Forest algorithm is a powerful tree learning technique in Machine Learning. It works 
by creating a number of Decision Trees during the training phase. Each tree is constructed 
using a random subset of the data set to measure a random subset of features in each 
partition. This randomness introduces variability among individual trees, reducing the risk 
of overfitting and improving overall prediction performance. 

In prediction, the algorithm aggregates the results of all trees, either by voting (for 
classification tasks) or by averaging (for regression tasks) This collaborative decision-making 
process, supported by multiple trees with their insights, provides an example stable and 
precise results. Random forests are widely used for classification and regression functions, 
which are known for their ability to handle complex data, reduce overfitting, and provide 
reliable forecasts in different environments. 
Random forest is an ensemble of Decision trees, trained with bagging method. The value of 
max_samples is set to 1.0. There is no need of pipelines in building classifiers/regressors. For 
splitting node, uses best feature among random subset of features.  

 
#Python code to demonstrate Random Forest classifier 
from sklearn.ensemble import RandomForestClassifier 
rcl=RandomForestClassifier(n_estimators=1000, 
                           max_leaf_nodes=16) 
rcl.fit(xtrain,ytrain) 
rcl.score(xtest,ytest) 
 

Extra Tree classifier 
Extremely Randomized Trees Classifier(Extra Trees Classifier) is a type of ensemble learning 
technique which aggregates the results of multiple de-correlated decision trees collected in a 
“forest” to output it’s classification result. In concept, it is very similar to a Random Forest 
Classifier and only differs from it in the manner of construction of the decision trees in the 
forest. Each Decision Tree in the Extra Trees Forest is constructed from the original training 
sample. Then, at each test node, Each tree is provided with a random sample of k features 
from the feature-set from which each decision tree must select the best feature to split the 

https://www.geeksforgeeks.org/ml-machine-learning/
https://www.geeksforgeeks.org/decision-tree/
https://www.geeksforgeeks.org/underfitting-and-overfitting-in-machine-learning/


 

  

DEPT. OF AIML , JNNCE 81 

 
 

MACHINE LEARNING STUDY MATERIAL, 

data based on some mathematical criteria (typically the Gini Index). This random sample of 
features leads to the creation of multiple de-correlated decision trees.  
 

Feature Importance 
Features in machine learning, also known as variables or attributes, are individual measurable 
properties or characteristics of the phenomena being observed. They serve as the input to 
the model, and their quality and quantity can greatly influence the accuracy and efficiency of 
the model. Several techniques can be employed to calculate feature importance in Random 
Forests, each offering unique insights: 

• Built-in Feature Importance: This method utilizes the model’s internal calculations to 
measure feature importance, such as Gini importance and mean decrease in 
accuracy. Essentially, this method measures how much the impurity (or randomness) 
within a node of a decision tree decreases when a specific feature is used to split the 
data. 

• Permutation feature importance: Permutation importance assesses the significance 
of each feature independently. By evaluating the impact of individual feature 
permutations on predictions, it calculates importance. 

• SHAP (SHapley Additive exPlanations) Values: SHAP values delve deeper by 
explaining the contribution of each feature to individual predictions. This method 
offers a comprehensive understanding of feature importance across various data 
points. 

#Python code to compute Feature Importance 
from sklearn.datasets import load_iris 
iris=load_iris(as_frame=True) 
rcl=RandomForestClassifier(n_estimators=500) 
rcl.fit(iris.data,iris.target) 
for score,name in zip(rcl.feature_importances_,iris.data.columns): 
  print(name,round(score,2)) 
 

Boosting  
Boosting is an ensemble modeling technique that attempts to build a strong classifier from 
the number of weak classifiers. It is done by building a model by using weak models in series. 
Firstly, a model is built from the training data. Then the second model is built which tries to 
correct the errors present in the first model. This procedure is continued and models are 
added until either the complete training data set is predicted correctly or the maximum 
number of models are added.  
Advantages of Boosting  

• Improved Accuracy – Boosting can improve the accuracy of the model by combining 
several weak models’ accuracies and averaging them for regression or voting over 
them for classification to increase the accuracy of the final model.  

• Robustness to Overfitting – Boosting can reduce the risk of overfitting by reweighting 
the inputs that are classified wrongly.  

• Better handling of imbalanced data – Boosting can handle the imbalance data by 
focusing more on the data points that are misclassified  
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• Better Interpretability – Boosting can increase the interpretability of the model by 
breaking the model decision process into multiple processes.   

 

Boosting methods 
Adaboost – AdaBoost is a boosting algorithm that also works on the principle of the stagewise 
addition method where multiple weak learners are used for getting strong learners. The value 
of the alpha parameter, in this case, will be indirectly proportional to the error of the weak 
learner, Unlike Gradient Boosting in XGBoost, the alpha parameter calculated is related to the 
errors of the weak learner, here the value of the alpha parameter will be indirectly 
proportional to the error of the weak learner. 

 
AdaBoost sequential training with instance weight updates 

#Python code of Adaboost classifier 
from sklearn.ensemble import AdaBoostClassifier 
acl=AdaBoostClassifier(     DecisionTreeClassifier(max_depth=1),  
     n_estimators=30, 
     learning_rate=0.5) 
acl.fit(xtrain,ytrain) 
 
Gradient Boosting – It is a boosting technique that builds a final model from the sum of 
several weak learning algorithms that were trained on the same dataset. It operates on the 
idea of stagewise addition. The first weak learner in the gradient boosting algorithm will not 
be trained on the dataset; instead, it will simply return the mean of the relevant column. The 
residual for the first weak learner algorithm’s output will then be calculated and used as the 
output column or target column for the next weak learning algorithm that will be trained. The 
second weak learner will be trained using the same methodology, and the residuals will be 
computed and utilized as an output column once more for the third weak learner, and so on 
until we achieve zero residuals. The dataset for gradient boosting must be in the form of 
numerical or categorical data, and the loss function used to generate the residuals must be 
differential at all times. 
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#Python code for Gradient Boosting 
from sklearn.ensemble import GradientBoostingRegressor 
gbrt = GradientBoostingRegressor(max_depth=2, n_estimators=3, learning_rate=1.0) 
gbrt.fit(X, y) 
 
Histogram based Gradient Boosting 
Histogram Gradient Boosting (HGB) is an optimized version of Gradient Boosting that 
enhances speed and efficiency. Here’s a detailed breakdown of how it works: 
Step-by-Step Working of Histogram Gradient Boosting 
Feature Binning: 

• Continuous features are divided into discrete bins (histograms). For example, a feature 
with continuous values might be divided into 256 bins. 

• This binning process reduces the number of unique feature values, which simplifies 
and accelerates computations. 

Gradient Calculation: 
• Compute gradients based on the binned features. The gradient indicates how much 

and in which direction we need to adjust predictions to reduce the error. 
Histogram Construction: 

• For each feature, build a histogram of gradient values. Each bin in the histogram 
represents the sum of gradients for data points that fall into that bin. 

• This step transforms the gradient computation into a simpler histogram update 
process. 

Tree Building: 
• Decision trees are constructed using these histograms. The algorithm evaluates split 

points by considering the bins rather than individual data points, which speeds up 
the process. 

• Trees are added iteratively, each aiming to reduce the residual errors of the current 
ensemble model. 

Model Update: 
• After adding a new tree, the model is updated, and the process repeats. Each iteration 

seeks to improve the model by reducing the errors incrementally. 
 

Stacking 
Stacking is a way to ensemble multiple classifications or regression model. There are many 
ways to ensemble models, the widely known models are Bagging or Boosting. Bagging allows 
multiple similar models with high variance are averaged to decrease variance. Boosting builds 
multiple incremental models to decrease the bias, while keeping variance small. 

Stacking (sometimes called Stacked Generalization) is a different paradigm. The point 
of stacking is to explore a space of different models for the same problem. The idea is that 
you can attack a learning problem with different types of models which are capable to learn 
some part of the problem, but not the whole space of the problem. So, you can build multiple 
different learners and you use them to build an intermediate prediction, one prediction for 
each learned model. Then you add a new model which learns from the intermediate 
predictions the same target. 



 

  

DEPT. OF AIML , JNNCE 84 

 
 

MACHINE LEARNING STUDY MATERIAL, 

This final model is said to be stacked on the top of the others, hence the name. Thus, 
you might improve your overall performance, and often you end up with a model which is 
better than any individual intermediate model. Notice however, that it does not give you any 
guarantee, as is often the case with any machine learning technique. 
Eg: 

 
Aggregating predictions using a blending predictor 

 
To train the blender, a common approach is to use a hold-out set. First, the training set is split 
in two subsets. The first subset is used to train the predictors in the first layer 

 
The blender is trained on this new training set, so it learns to predict the target value given 
the first layer’s predictions. 
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It is actually possible to train several different blenders this way (e.g., one using Lin‐ ear 
Regression, another using Random Forest Regression, and so on): we get a whole layer of 
blenders. The trick is to split the training set into three subsets: the first one is used to train 
the first layer, the second one is used to create the training set used to train the second layer 
(using predictions made by the predictors of the first layer), and the third one is used to create 
the training set to train the third layer (using pre‐ dictions made by the predictors of the 
second layer) 

 
Predictions in a multilayer stacking ensemble 
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MODULE V: 
 

Bayesian Learning 
Bayesian Machine Learning (BML) encompasses a suite of techniques and algorithms that 
leverage Bayesian principles to model uncertainty in data. These methods are not just 
theoretical constructs; they are practical tools that have transformed the way machines learn 
from data.  
 

Bayesian Learning Model: 

 
Features of Bayesian learning 
❖ Each observed training example can incrementally decrease or increase the estimated 

probability that a hypothesis is correct 
❖ Prior knowledge can be combined with observed data to determine the final 

probability of a hypothesis 
❖ Accommodate hypothesis that make probabilistic predictions 
❖ Classify based on combining predictions of multiple hypothesis  
❖ Provides optimal decision making 

 

Bayes theorem in Machine Learning 
Bayes’ theorem is fundamental in machine learning, especially in the context of Bayesian 
inference. It provides a way to update our beliefs about a hypothesis based on new evidence. 
Formula: 

 
Where, 
P(h) is prior probability of hypothesis h 
P(D) is prior probability of training data D 
P(h|D) is posterior probability of h given D 
P(D|h) is posterior probability of D given h 
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P(h|D) increases with increase in P(D|h) and P(h) 
P(h|D) decreases with increase in P(D) 

MAP Hypothesis 
Maximum a Posteriori (MAP) estimation is a statistical technique used to estimate 
the probability distribution of a dataset by incorporating prior knowledge or experience. It is 
an extension of the maximum likelihood estimation (MLE) method, which estimates 
parameters of a statistical model by maximizing the likelihood function, without considering 
any prior distribution of the parameters. 

In contrast, MAP estimation takes into account the prior distribution of the 
parameters, which reflects any existing beliefs or information about the parameters before 
observing the current data. This prior knowledge is combined with the likelihood of the 
observed data to produce the posterior distribution, which represents the updated beliefs 
about the parameters after taking the data into account. 
 
MAP working: 

 
Second step  comes from the application of Bayes theorem and third step is the consequence 
of independence of P(D) on h. 
 

Maximum likelihood hypothesis 
In machine learning, the likelihood is a measure of the data observations up to which it can 
tell us the results or the target variables value for particular data points. In simple words, as 
the name suggests, the likelihood is a function that tells us how likely the specific data point 
suits the existing data distribution. maximum likelihood represents that we are maximizing 
the likelihood function, called the Maximization of the Likelihood Function.  It is given by: 

 
 
Problem: 

https://deepai.org/machine-learning-glossary-and-terms/estimator
https://deepai.org/machine-learning-glossary-and-terms/probability-distribution
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Solution: 
As per  Bayes theorem : 

P(A|B)=
P(B|A).P(A)

𝑃(𝐵)
 =

2

4
∗
4

7
3

7

 =2/3 

P(B|A)=
P(A|B).P(B)

𝑃(𝐴)
 =

2

3
∗
3

7
4

7

 =2/4 

Hence Bayes theorem is verified as correct for this example 
 
Problem: 

Given,  
we now observe a new patient for whom the lab test returns a positive result. Should we 
diagnose the patient as having cancer or not?  
Solution: 
P(cancer|⨁)= P(⨁|cancer) ∗ P(cancer) 
                         =0.98*0.008=0.0078 
P(¬cancer|⨁)= P(⨁|¬cancer) ∗ P(¬cancer) 
                         =0.03*0.992=0.0298 
Normalize the probabilities so that sum of probabilities=1 

P(cancer|⨁)=
0.0078

0.0078+0.0298
=0.21 

P(¬cancer|⨁)=
0.0298

0.0078+0.0298
=0.79 

Hence, it should be diagonized as cancer is negative despite of a positive lab report.  
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Brute for MAP learning algorithm consumes significant computational resources as all the 
hypothesis in the hypothesis set is to be checked. 
Assumptions of Brute-Force MAP: 
1. The training data D is noise free 
2. The target concept c is contained in the hypothesis space H 
3. We have no a priori reason to believe that any hypothesis is more probable than any other. 
 
Derivations: 
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Maximum Likelihood and Least Squared Error hypothesis 
Any learning algorithm that minimizes the squared error between the output hypothesis 
predictions and the training data will output a maximum likelihood hypothesis 
Consider: 

 

 
It is assumed that noise distribution is normal. 
Learning of a real valued function has an example graph as depicted below: 
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Since continuous values are used, probability density function is used. 

 
 
Derivation of hML: 

 
Probability density is the product of probability of individual instances 

 
The probability is computed as normal distribution 

 
 
Applying log transformation: 

 
Taking out independent term 
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Maximum of negatives is same as minimum of positives 

 
Taking out independent term: 

 
Thus, Any learning algorithm that minimizes the squared error between the output 
hypothesis predictions and the training data will output a maximum likelihood hypothesis 
 

Maximum Likelihood for predicting probability (Discrete case) 
Consider: 

𝑵𝒆𝒆𝒅 𝒕𝒐 𝒇𝒊𝒏𝒅 𝒇′: 𝑿 → [𝟎, 𝟏]  
𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝒕 𝒇′(𝒙) = 𝑷(𝒇(𝒙) = 𝟏) 

Derivations: 

 
Applying product theorem: 

 

 
Apply for all m samples: 
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Substitution: 

 

 
Taking out independent term: 

 
Taking log transformation 

 
 

Minimum length description Principle 
Minimum Description Length (MDL) is a model selection principle where the shortest 
description of the data is the best model. MDL methods learn through a data compression 
perspective and are sometimes described as mathematical applications of Occam's razor. The 
MDL principle can be extended to other forms of inductive inference and learning, for 
example to estimation and sequential prediction, without explicitly identifying a single model 
of the data. 

MDL applies in machine learning when algorithms (machines) generate descriptions. 
Learning occurs when an algorithm generates a shorter description of the same data set. 
 
 
 
 
 
 
Deriving MDL: 

 

https://en.wikipedia.org/wiki/Model_selection
https://en.wikipedia.org/wiki/Occam%27s_razor
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Bayes optimal classifier 
Bayes optimal classifier answers the question: what is the most probable classification of the 
new instance given the training data. 

 
 

Problem: 

 

 
Apply Bayes optimal classifier and find what is the classification result 
 
Solution: 
Computing P(V) 
P(⊕)=[P(⊕ |ℎ1).P(h1|D)+ P(⊕ |ℎ2).P(h2|D)+ P(⊕ |ℎ3).P(h3|D)] 
          =[0.4+0+0]=0.4 
 
P(⊖)=[P(⊖ |ℎ1).P(h1|D)+ P(⊖ |ℎ2).P(h2|D)+ P(⊖ |ℎ3).P(h3|D)] 
          =[0+0.3+0.3]=0.6 
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Hence, taking argmax, bayes optimal classifier results in negative class 
 

Gibbs Algorithm: 
1. Choose a hypothesis h from H at random, according to posterior probability 

distribution over H 
2. Use h to predict the classification of the next instance 
3. Less computationally complex 
4. misclassification error for the Gibbs algorithm is at most twice the expected error of 

the Bayes optimal classifier 
 

Naïve Bayes Classifier 
Naive Bayes classifiers are a collection of classification algorithms based on Bayes’ Theorem. 
It is not a single algorithm but a family of algorithms where all of them share a common 
principle, i.e. every pair of features being classified is independent of each other. 
Derivations: 

 

 

 
Assumption : feature attributes are independent of each other 

 
  

https://www.geeksforgeeks.org/bayes-theorem/
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Problem: 
Given the dataset: 

 
P(P1ayTennis = yes)  = 9/14 
P(P1ayTennis = no)  =5/14 
P(Wind = strong|PlayTennis = yes) =3/9 
P(Wind = strong|PlayTennis = no) =3/5 
 

Need of m-estimate: 
Conditional probabilities can be estimated directly as relativ e frequencies: 

 

 
However,  
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Bayesian Belief Network 
Bayesian belief network is key computer technology for dealing with probabilistic events 
and to solve a problem which has uncertainty. We can define a Bayesian network as: 
"A Bayesian network is a probabilistic graphical model which represents a set of variables 
and their conditional dependencies using a directed acyclic graph." 
It is also called a Bayes network, belief network, decision network, or Bayesian model. 
Bayesian networks are probabilistic, because these networks are built from a probability 
distribution, and also use probability theory for prediction and anomaly detection. 
 
Real world applications are probabilistic in nature, and to represent the relationship 
between multiple events, we need a Bayesian network. It can also be used in various tasks 
including prediction, anomaly detection, diagnostics, automated insight, reasoning, time 
series prediction, and decision making under uncertainty. 
 
Bayesian Network can be used for building models from data and experts opinions, and 
it consists of two parts: 

o Directed Acyclic Graph 
o Table of conditional probabilities. 

The generalized form of Bayesian network that represents and solve decision problems 
under uncertain knowledge is known as an Influence diagram. 
A Bayesian network graph is made up of nodes and Arcs (directed links), where: 
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o Each node corresponds to the random variables, and a variable can 

be continuous or discrete. 
o Arc or directed arrows represent the causal relationship or conditional 

probabilities between random variables. These directed links or arrows connect 
the pair of nodes in the graph. 

The Bayesian network has mainly two components: 
o Causal Component 
o Actual numbers 

Each node in the Bayesian network has condition probability 
distribution P(Xi |Parent(Xi) ), which determines the effect of the parent on that node. 
 
Example: 
Harry installed a new burglar alarm at his home to detect burglary. The alarm reliably 
responds at detecting a burglary but also responds for minor earthquakes. Harry has two 
neighbors David and Sophia, who have taken a responsibility to inform Harry at work 
when they hear the alarm. David always calls Harry when he hears the alarm, but 
sometimes he got confused with the phone ringing and calls at that time too. On the other 
hand, Sophia likes to listen to high music, so sometimes she misses to hear the alarm. 
Here we would like to compute the probability of Burglary Alarm. Calculate the 
probability that alarm has sounded, but there is neither a burglary, nor an earthquake 
occurred, and David and Sophia both called the Harry. 
Solution: 
List of all events occurring in this network: 

o Burglary (B) 
o Earthquake(E) 
o Alarm(A) 
o David Calls(D) 
o Sophia calls(S) 

 
P[D, S, A, B, E]= P[D | S, A, B, E]. P[S, A, B, E] 
=P[D | S, A, B, E]. P[S | A, B, E]. P[A, B, E] 
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= P [D| A]. P [ S| A, B, E]. P[ A, B, E] 
= P[D | A]. P[ S | A]. P[A| B, E]. P[B, E] 
= P[D | A ]. P[S | A]. P[A| B, E]. P[B |E]. P[E] 

 
 
P(B= True) = 0.002, which is the probability of burglary. 
P(B= False)= 0.998, which is the probability of no burglary. 
P(E= True)= 0.001, which is the probability of a minor earthquake 
P(E= False)= 0.999, Which is the probability that an earthquake not occurred. 
We can provide the conditional probabilities as per the below tables: 
The Conditional probability of Alarm A depends on Burglar and earthquake: 

B E P(A= True) P(A= False) 

True True 0.94 0.06 

True False 0.95 0.04 

False True 0.31 0.69 

False False 0.001 0.999 

Conditional probability table for David Calls: 
The Conditional probability of David that he will call depends on the probability of Alarm. 

A P(D= True) P(D= False) 
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True 0.91 0.09 

False 0.05 0.95 

Conditional probability table for Sophia Calls: 
The Conditional probability of Sophia that she calls is depending on its Parent Node 
"Alarm." 

A P(S= True) P(S= False) 

True 0.75 0.25 

False 0.02 0.98 

From the formula of joint distribution, we can write the problem statement in the form of 
probability distribution: 
P(S, D, A, ¬B, ¬E) = P (S|A) *P (D|A)*P (A|¬B ^ ¬E) *P (¬B) *P (¬E). 
= 0.75* 0.91* 0.001* 0.998*0.999 
= 0.00068045. 
Hence, a Bayesian network can answer any query about the domain by using Joint 
distribution. 
 

EM Algorithm in Machine Learning 
The EM algorithm is considered a latent variable model to find the local maximum 
likelihood parameters of a statistical model. The EM (Expectation-Maximization) 
algorithm is one of the most commonly used terms in machine learning to obtain 
maximum likelihood estimates of variables that are sometimes observable and 
sometimes not. However, it is also applicable to unobserved data or sometimes called 
latent. It has various real-world applications in statistics, including obtaining the mode of 
the posterior marginal distribution of parameters in machine learning and data mining 
applications. 

The Expectation-Maximization (EM) algorithm is defined as the combination of 
various unsupervised machine learning algorithms, which is used to determine the local 
maximum likelihood estimates (MLE) or maximum a posteriori estimates (MAP) for 
unobservable variables in statistical models. Further, it is a technique to find maximum 
likelihood estimation when the latent variables are present. It is also referred to as 
the latent variable model. 

The EM algorithm is the combination of various unsupervised ML algorithms, such 
as the k-means clustering algorithm. Being an iterative approach, it consists of two 
modes. In the first mode, we estimate the missing or latent variables. Hence it is referred 
to as the Expectation/estimation step (E-step). Further, the other mode is used to 
optimize the parameters of the models so that it can explain the data more clearly. The 
second mode is known as the maximization-step or M-step. 
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o Expectation step (E - step): It involves the estimation (guess) of all missing values 

in the dataset so that after completing this step, there should not be any missing 
value. 

o Maximization step (M - step): This step involves the use of estimated data in the 
E-step and updating the parameters. 

o Repeat E-step and M-step until the convergence of the values occurs. 
 

The primary goal of the EM algorithm is to use the available observed data of the dataset 
to estimate the missing data of the latent variables and then use that data to update the 
values of the parameters in the M-step. 
 
Steps in EM Algorithm 
The EM algorithm is completed mainly in 4 steps, which include Initialization Step, 
Expectation Step, Maximization Step, and convergence Step. These steps are explained 
as follows: 

 
Applications of EM algorithm 
The primary aim of the EM algorithm is to estimate the missing data in the latent variables 
through observed data in datasets. The EM algorithm or latent variable model has a broad 
range of real-life applications in machine learning. These are as follows: 

o The EM algorithm is applicable in data clustering in machine learning. 
o It is often used in computer vision and NLP (Natural language processing). 
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o It is used to estimate the value of the parameter in mixed models such as 
the Gaussian Mixture Modeland quantitative genetics. 
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Additional Problems: 
1. Apply candidate elimination for following dataset: Candidate Elimination 
Algorithm): 
 

Example  Citations Size InLibrary Price Editions Buy 

1  Some Small No Affordable One No 

2  Many Big No Expensive Many Yes 

3  Many Medium No Expensive Few Yes 

4  Many Small No Affordable Many Yes 

 
Solution: 
S0: (0, 0, 0, 0, 0) Most Specific Boundary 
G0: (?,  ?,  ?, ?, ?) Most Generic Boundary 
The first example is negative, the hypothesis at the specific boundary is consistent, hence 
we retain it, and the hypothesis at the generic boundary is inconsistent hence we write 
all consistent hypotheses by removing one “?” at a time. 
S1: (0, 0, 0, 0, 0) 
G1: (Many,?,?,?, ?) (?, Big,?,?,?) (?,Medium,?,?,?) (?,?,?,Exp,?) (?,?,?,?,One) (?,?,?,?,Few) 
The second example is positive, the hypothesis at the specific boundary is inconsistent, 
hence we extend the specific boundary, and the consistent hypothesis at the generic 
boundary is retained and inconsistent hypotheses are removed from the generic 
boundary. 
S2: (Many, Big, No, Exp, Many) 
G2: (Many,?,?,?, ?) (?, Big,?,?,?) (?,?,?,Exp,?) (?,?,?,?,Many)  
The third example is positive, the hypothesis at the specific boundary is inconsistent, 
hence we extend the specific boundary, and the consistent hypothesis at the generic 
boundary is retained and inconsistent hypotheses are removed from the generic 
boundary. 
S3: (Many, ?, No, Exp, ?) 
G3: (Many,?,?,?,?) (?,?,?,exp,?) 
The fourth example is positive, the hypothesis at the specific boundary is inconsistent, 
hence we extend the specific boundary, and the consistent hypothesis at the generic 
boundary is retained and inconsistent hypotheses are removed from the generic 
boundary. 
S4: (Many, ?, No, ?, ?) 
G4: (Many,?,?,?,?) 
Learned Version Space by Candidate Elimination Algorithm for given data set is: 
(Many, ?, No, ?, ?) (Many, ?, ?, ?, ?) 
 
 
2. Problem on Version Space – Candidate Elimination. Learning the concept of 
"Japanese Economy Car" 
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Features: ( Country of Origin, Manufacturer, Color, Decade, Type ) 
 

Origin Manufacturer Color Decade Type Example 
Type 

Japan Honda Blue 1980 Economy Positive 

Japan Toyota Green 1970 Sports Negative 
Japan Toyota Blue 1990 Economy Positive 
USA Chrysler Red 1980 Economy Negative 

Japan Honda White 1980 Economy Positive 
 
 
Solution: 
Step 1: Positive Example: (Japan, Honda, Blue, 1980, Economy) 
G = { (?, ?, ?, ?, ?) } 
S = { (Japan, Honda, Blue, 1980, Economy) } 
Step 2: Negative Example: (Japan, Toyota, Green, 1970, Sports) 

G = 

{ (?, Honda, ?, ?, ?), 
(?, ?, Blue, ?, ?), 
(?, ?, ?, 1980, ?), 
(?, ?, ?, ?, Economy) } 

S = { (Japan, Honda, Blue, 1980, Economy) } 

Step 3: Positive Example: (Japan, Toyota, Blue, 1990, Economy) 

G = 
{ (?, ?, Blue, ?, ?), 
(?, ?, ?, ?, Economy) } 

S = { (Japan, ?, Blue, ?, Economy) } 

Step 4: Negative Example: (USA, Chrysler, Red, 1980, Economy) 

G = 
{ (?, ?, Blue, ?, ?), 
(Japan, ?, ?, ?, Economy) } 

S = { (Japan, ?, Blue, ?, Economy) } 

 
Step 5: Positive Example: (Japan, Honda, White, 1980, Economy) 
G = { (Japan, ?, ?, ?, Economy) } 
S = { (Japan, ?, ?, ?, Economy) } 
 
3.  In Orange County, 51% of the adults are males. (It doesn't take too much 
advanced mathematics to deduce that the other 49% are females.) One adult is 
randomly selected for a survey involving credit card usage. 
 a) Find the prior probability that the selected person is a male.  
b) It is later learned that the selected survey subject was smoking a cigar. Also, 
9.5% of males smoke cigars, whereas 1.7% of females smoke cigars (based on data 
from the Substance Abuse and Mental Health Services Administration). Use this 
additional information to find the probability that the selected subject is a male. 
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4. Apply Naïve Bayes Classifier for the following dataset: 

Sl. No. Color Legs Height Smelly Species 

1 White 3 Short Yes M 

2 Green 2 Tall No M 

3 Green 3 Short Yes M 

4 White 3 Short Yes M 

5 Green 2 Short No H 

6 White 2 Tall No H 

7 White 2 Tall No H 

8 White 2 Short Yes H 

 
Solution: 
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Using the above data, we have to identify the species of an entity with the following 
attributes. 
X={Color=Green, Legs=2, Height=Tall, Smelly=No} 
To predict the class label for the above attribute set, we will first calculate the probability 
of the species being M or H in total. 
P(Species=M)=4/8=0.5 
P(Species=H)=4/8=0.5 
Next, we will calculate the conditional probability of each attribute value for each class 
label. 
P(Color=White/Species=M)=2/4=0.5 
P(Color=White/Species=H)=¾=0.75 
P(Color=Green/Species=M)=2/4=0.5 
P(Color=Green/Species=H)=¼=0.25 
P(Legs=2/Species=M)=1/4=0.25 
P(Legs=2/Species=H)=4/4=1 
P(Legs=3/Species=M)=3/4=0.75 
P(Legs=3/Species=H)=0/4=0 
P(Height=Tall/Species=M)=3/4=0.75 
P(Height=Tall/Species=H)=2/4=0.5 
P(Height=Short/Species=M)=1/4=0.25 
P(Height=Short/Species=H)=2/4=0.5 
P(Smelly=Yes/Species=M)=3/4=0.75 
P(Smelly=Yes/Species=H)=1/4=0.25 
P(Smelly=No/Species=M)=1/4=0.25 
P(Smelly=No/Species=H)=3/4=0.75 
We can tabulate the above calculations in the tables for better visualization.  
The conditional probability table for the Color attribute is as follows. 

Color M H 
White 0.5 0.75 
Green 0.5 0.25 

Conditional Probabilities for Color Attribute 
The conditional probability table for the Legs attribute is as follows. 

Legs M H 
2 0.25 1 
3 0.75 0 

Conditional Probabilities for Legs Attribute 
 
The conditional probability table for the Height attribute is as follows. 

Height M H 
Tall 0.75 0.5 
Short 0.25 0.5 

Conditional Probabilities for Height Attribute 
The conditional probability table for the Smelly attribute is as follows. 

Smelly M H 
Yes 0.75 0.25 
No 0.25 0.75 
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Conditional Probabilities for Smelly Attribute 
Now that we have calculated the conditional probabilities, we will use them to calculate 
the probability of the new attribute set belonging to a single class. 
Let us consider X= {Color=Green, Legs=2, Height=Tall, Smelly=No}. 
Then, the probability of X belonging to Species M will be as follows. 
P(M/X)=P(Species=M)*P(Color=Green/Species=M)*P(Legs=2/Species=M)*P(Height=Ta
ll/Species=M)*P(Smelly=No/Species=M) 
      =0.5*0.5*0.25*0.75*0.25 
      =0.0117 
Similarly, the probability of X belonging to Species H will be calculated as follows. 
P(H/X)=P(Species=H)*P(Color=Green/Species=H)*P(Legs=2/Species=H)*P(Height=Tall
/Species=H)*P(Smelly=No/Species=H) 
      =0.5*0.25*1*0.5*0.75 
      =0.0468 
So, the probability of X belonging to Species M is 0.0117 and that to Species H is 0.0468. 
Hence, we will assign the entity X with attributes  {Color=Green, Legs=2, Height=Tall, 
Smelly=No} to species H. 
 
5. Build a decision tree using ID3 algorithm for the given training data in the table 
(Buy Computer data), and predict the class of the following new example: age<=30, 
income=medium, student=yes, credit-rating=fair 

age income student Credit rating Buys computer 

<=30 high no fair no 

<=30 high no excellent no 

31…40 high no fair yes 

>40 medium no fair yes 

>40 low yes fair yes 

>40 low yes excellent no 

31…40 low yes excellent yes 

<=30 medium no fair no 

<=30 low yes fair yes 

>40 medium yes fair yes 

<=30 medium yes excellent yes 

31…40 medium no excellent yes 
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31…40 high yes fair yes 

>40 medium no excellent no 

 
Solution: 
The information gain is this mutual information minus the entropy: 
The mutual information of the two classes, 
Entropy(S)= E(9,5)= -9/14 log2(9/14) – 5/14 log2(5/14)=0.94 
Now Consider the Age attribute 
For Age, we have three values age<=30 (2 yes and 3 no), age31..40 (4 yes and 0 no), and 
age>40 (3 yes and 2 no) 
Entropy(age) = 5/14 (-2/5 log2(2/5)-3/5log2(3/5)) + 4/14 (0) + 5/14 (-3/5log2(3/5)-
2/5log2(2/5)) 
= 5/14(0.9709) + 0 + 5/14(0.9709) = 0.6935 
Gain(age) = 0.94 – 0.6935 = 0.2465 
Next, consider Income Attribute 
For Income, we have three values incomehigh (2 yes and 2 no), incomemedium (4 yes and 2 
no), and incomelow (3 yes 1 no) 
Entropy(income) = 4/14(-2/4log2(2/4)-2/4log2(2/4)) + 6/14 (-4/6log2(4/6)-
2/6log2(2/6)) + 4/14 (-3/4log2(3/4)-1/4log2(1/4)) 
= 4/14 (1) + 6/14 (0.918) + 4/14 (0.811) 
= 0.285714 + 0.393428 + 0.231714 = 0.9108 
Gain(income) = 0.94 – 0.9108 = 0.0292 
Next, consider Student Attribute 
For Student, we have two values studentyes (6 yes and 1 no) and studentno (3 yes 4 no) 
Entropy(student) = 7/14(-6/7log2(6/7)-1/7log2(1/7)) + 7/14(-3/7log2(3/7)-
4/7log2(4/7) 
= 7/14(0.5916) + 7/14(0.9852) 
= 0.2958 + 0.4926 = 0.7884 
Gain (student) = 0.94 – 0.7884 = 0.1516 
Finally, consider Credit_Rating Attribute 
For Credit_Rating we have two values credit_ratingfair (6 yes and 2 no) and 
credit_ratingexcellent (3 yes 3 no) 
Entropy(credit_rating) = 8/14(-6/8log2(6/8)-2/8log2(2/8)) + 6/14(-3/6log2(3/6)-
3/6log2(3/6)) 
= 8/14(0.8112) + 6/14(1) 
= 0.4635 + 0.4285 = 0.8920 
Gain(credit_rating) = 0.94 – 0.8920 = 0.479 
Since Age has the highest Information Gain we start splitting the dataset using the age 
attribute. 



 

  

DEPT. OF AIML , JNNCE 109 

 
 

MACHINE LEARNING STUDY MATERIAL, 

Decision Tree after step 1 
Since all records under the branch age31..40 are all of the class, Yes, we can replace the 
leaf with Class=Yes 

Decision Tree after step 1_1 
Now build the decision tree for the left subtree 
The same process of splitting has to happen for the two remaining branches. 

 
 
Left sub-branch 
For branch age<=30 we still have attributes income, student, and credit_rating. Which 
one should be used to split the partition? 
The mutual information is E(Sage<=30)= E(2,3)= -2/5 log2(2/5) – 3/5 log2(3/5)=0.97 
For Income, we have three values incomehigh (0 yes and 2 no), incomemedium (1 yes and 1 
no) and incomelow (1 yes and 0 no) 
Entropy(income) = 2/5(0) + 2/5 (-1/2log2(1/2)-1/2log2(1/2)) + 1/5 (0) = 2/5 (1) = 0.4 
Gain(income) = 0.97 – 0.4 = 0.57 
For Student, we have two values studentyes (2 yes and 0 no) and studentno (0 yes 3 no) 

https://vtupulse.com/wp-content/uploads/2023/01/image.png
https://vtupulse.com/wp-content/uploads/2023/01/image-1.png
https://vtupulse.com/wp-content/uploads/2023/01/image-2.png
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Entropy(student) = 2/5(0) + 3/5(0) = 0 
Gain (student) = 0.97 – 0 = 0.97 
We can then safely split on attribute student without checking the other attributes since 
the information gain is maximized. 

 
 
Decision Tree after step 2 
Since these two new branches are from distinct classes, we make them into leaf nodes 
with their respective class as label: 

 
 

Decision Tree after step 2_2 
Now build the decision tree for right left subtree 

 
 
Right sub-branch 

https://vtupulse.com/wp-content/uploads/2023/01/image-6.png
https://vtupulse.com/wp-content/uploads/2023/01/image-5.png
https://vtupulse.com/wp-content/uploads/2023/01/image-8.png
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The mutual information is Entropy(Sage>40)= I(3,2)= -3/5 log2(3/5) – 2/5 log2(2/5)=0.97 
For Income, we have two values incomemedium (2 yes and 1 no) and incomelow (1 yes and 
1 no) 
Entropy(income) = 3/5(-2/3log2(2/3)-1/3log2(1/3)) + 2/5 (-1/2log2(1/2)-
1/2log2(1/2)) 
= 3/5(0.9182)+2/5 (1) = 0.55+0. 4= 0.95 
Gain(income) = 0.97 – 0.95 = 0.02 
For Student, we have two values studentyes (2 yes and 1 no) and studentno (1 yes and 1 
no) 
Entropy(student) = 3/5(-2/3log2(2/3)-1/3log2(1/3)) + 2/5(-1/2log2(1/2)-
1/2log2(1/2)) = 0.95 
Gain (student) = 0.97 – 0.95 = 0.02 
For Credit_Rating, we have two values credit_ratingfair (3 yes and 0 no) and 
credit_ratingexcellent (0 yes and 2 no) 
Entropy(credit_rating) = 0 
Gain(credit_rating) = 0.97 – 0 = 0.97 
We then split based on credit_rating. These splits give partitions each with records from 
the same class. We just need to make these into leaf nodes with their class label attached: 

Decision Tree for Buys Computer 
New example: age<=30, income=medium, student=yes, credit-rating=fair 
Follow branch(age<=30) then student=yes we predict Class=yes 
Buys_computer = yes 
  

https://vtupulse.com/wp-content/uploads/2023/01/image-7.png
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Model Paper: 
 
Q.1 

(a) What is Machine Leaning? Explain the applications of Machine Learning 04M 
(b) Discuss the any four main challenges of machine learning 08M 

(c) Consider the “Japanese Economy Car” concept and instance given in Table 1., 
Illustrate the hypothesis using Candidate Elimination Learning algorithm. 

Origin Manufacturer Color Decade Type Example 
Type 

Japan Honda Blue 1980 Economy Positive 

Japan Toyota Green 1970 Sports Negative 

Japan Toyota Blue 1990 Economy Positive 

USA Chrysler Red 1980 Economy Negative 

Japan Honda White 1980 Economy Positive 
 

08M 

 

 
 
 
Q.2 

 
(a) 

Explain Find-S algorithm ad show its working by taking the enjoy sport 
concept and training instances given in Table 2. 

 
Exampl
e 
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Warm High Stron
g 

Cool Change Yes 

 

 
10M 

(b) Discuss the features of an unbiased Learner. 06M 

 (c)    State the following problems with respect to Tasks, Performance, and 
Experience: i)A Checkers learning problem ii) A Robot driving learning 
problem. 

04M 

  

 
Q.3 

(a) In context to prepare the data for Machine Learning algorithms, Write a note 
on (i) Data Cleaning (ii) Handling text and categorical attributes iii)Feature 
scaling 

10M 

(b) With the code snippets show how Grid Search and Randomized Search helps in 
Fine- Tuning a model. 

10M 

 
 
 
 
Q.4 

(a) Using code snippets, outline the concepts involved in 
i) Measuring accuracy using Cross-Validation. 
ii) Confusion Matrix. 
iii)Precision and Recall. 

10M 

 (b) With the code snippet explain how Multilabels classification different from 
multiclass Multioutput classification? 

10M 

Q.5 (a) what is gradient descent algorithm and discuss its various types. 10M 
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 (b) In Regularized Linear Models illustrate the three different methods to 
constrain the weights. 

10M 

 
 
Q.6 

(a) With respect to Nonlinear SVM Classification, explain Polynomial Kernel 
Gaussian 
and RBF Kernel along with code snippet. 

10M 

 (b) Show that how SVMs make predictions using Quadratic Programming and 
Kernelized SVM. 

10 M 

 
Q.7 (a) With an example dataset examine how Decision Trees are used in making 

predictions. 
10M 

 (b) Explain The CART Training Algorithm. 06M 

 (c) Identify the features of Regression and Instability w.r.t decision trees. 04M 

 

 
Q.8 

(a) In context to Ensemble methods determine the concepts of 
i) Bagging and Pasting. 
Voting Classifiers. 

10M 

 (b) Examine the following boosting methods along with code snippets. 
i) AdaBoost  
ii) Gradient Boosting 

10M 

 
 
 
Q.9 

(a) Write Bayes theorem. Identify the relationship between Bayes theorem and 
the problem of concept learning? 

10M 

(b) Show that how Maximum Likelihood Hypothesis is helpful for predicting 
probabilities. 

10M 

 
 
 
Q.10 

(a) Construct Naïve Bayes Classifier with an Example. 10M 

(b) Derive the EM Algorithm in detail. 10M 

 
 
 
 
 
 


