

DEPT OF AIML, JNNCE 1

NOSQL -STUDY MATERIAL

NOSQL

Module-1 Notes

Value of Relational Databases
Relational databases have become such an embedded part of our computing culture that it’s

easy to take them for granted. It’s therefore useful to revisit the benefits they provide. Relational

databases provide robust mechanisms for ensuring persistency, consistency, concurrency, and

integration. Their ability to permanently store data, maintain data integrity, manage concurrent

access, and seamlessly integrate with other systems makes them invaluable in many

organizational contexts.

 Persistency- Relational databases ensure that once a transaction is committed, the data

is stored permanently, even in the event of a power failure or system crash. This

durability is a fundamental aspect of the ACID properties. They provide robust backup

and recovery mechanisms, allowing data to be restored to a previous state if needed.

This ensures long-term data retention and reliability.

 Consistency - Relational databases enforce data integrity through constraints such as

primary keys, foreign keys, unique constraints, and check constraints. This ensures that

the data remains accurate and consistent. Transactions in relational databases adhere to

the consistency property of ACID, ensuring that each transaction brings the database

from one valid state to another. This prevents data corruption and maintains database

rules and constraints.

 Concurrency - Relational databases support various isolation levels (e.g., read

uncommitted, read committed, repeatable read, serializable) to manage concurrent

access to the data. These isolation levels help prevent issues like dirty reads, non-

repeatable reads, and phantom reads. They use sophisticated locking mechanisms to

manage concurrent access to data, ensuring that multiple transactions can occur

simultaneously without causing inconsistencies or data corruption. This is crucial for

maintaining data integrity in multi-user environments.

 Integration - SQL provides a standardized way to interact with relational databases,

facilitating integration with various applications, tools, and platforms. This

standardization ensures that different systems can communicate with the database

effectively. Relational databases can be integrated with other databases and systems

through various methods such as ETL (Extract, Transform, Load) processes, database

links, and APIs. This allows for seamless data exchange and integration across different

platforms.

 A (Mostly) Standard Model - Relational databases have succeeded because they

provide the core benefits we outlined earlier in a (mostly) standard way. As a result,

developers and database professionals can learn the basic relational model and apply it

in many projects. Although there are differences between different relational databases,

the core mechanisms remain the same: Different vendors’ SQL dialects are similar,

transactions operate in mostly the same way.

Impedance mismatch issue of RDBMS
 The impedance mismatch issue in RDBMS refers to the conceptual and practical

difficulties that arise when trying to bridge the gap between the relational data model

and the object-oriented programming (OOP) paradigm. In relational databases, data is

organized into tables with rows and columns, and relationships between data are

DEPT OF AIML, JNNCE 2

NOSQL -STUDY MATERIAL

represented using foreign keys. On the other hand, object-oriented programming

languages like Java, C++, and Python organize data into objects, which encapsulate

both data and behavior. This fundamental difference in data representation leads to

challenges in translating complex data structures and relationships between the two

models.

 The impedance mismatch manifests in several ways, such as difficulty in mapping

object hierarchies to relational tables, managing object identity versus primary keys,

and handling relationships like inheritance and polymorphism. For example, a complex

object graph with nested objects and collections must be flattened into a tabular

structure for storage in an RDBMS, and vice versa when retrieving data. This often

requires additional code for conversion, leading to increased complexity and potential

performance issues. Moreover, maintaining data consistency and integrity between the

object model and the relational model can be challenging, necessitating the use of

Object-Relational Mapping (ORM) frameworks, which introduce their own learning

curves and potential performance overheads. These discrepancies complicate

development and can impact application performance and maintainability.

 if you want to use a richer in memory data structure, you have to translate it to a

relational representation to store it on disk. Hence the impedance mismatch—two

different representations that require translation as shown in the following figure:

Application and Integration databases
 An integration database is a centralized repository designed to store and manage data

from multiple applications, often developed by separate teams. This database serves as

a common data source, ensuring that different applications within an organization can

access and share consistent and up-to-date information. By consolidating data from

various systems, the integration database eliminates data silos and facilitates seamless

data flow between applications.

DEPT OF AIML, JNNCE 3

NOSQL -STUDY MATERIAL

 This setup supports efficient data integration, enabling cross-functional teams to

collaborate more effectively and make informed decisions based on a unified dataset.

Moreover, it enhances data integrity and consistency by providing a single point of

truth, while also simplifying data governance and security management. The integration

database plays a critical role in complex IT environments, where interoperability and

real-time data access are essential for operational efficiency and strategic planning.

 An application database is designed to support a specific application, serving as the

dedicated repository for all data that the application needs to function. This database is

typically accessed exclusively by the application's codebase, ensuring a tightly coupled

relationship between the application and its data. The single-team management

approach allows for highly customized schema design and optimization tailored to the

application's unique requirements.

 This includes structuring the data in a way that maximizes performance for the

application's most frequent queries and transactions. The dedicated focus also enables

quick iterations and adjustments to the database schema and indexing strategies in

response to evolving application needs, ensuring that the database remains aligned with

the application's performance and functionality goals.

 By being managed by a single team, the application database benefits from streamlined

communication and coordination, reducing the complexity that often arises when

multiple teams are involved.

 Furthermore, this dedicated approach simplifies security management, as the team can

implement and enforce specific access controls and data protection measures tailored

to the application's requirements. Overall, the application database's exclusive access

and single-team management create a highly efficient, responsive, and secure data

environment that is closely aligned with the application's operational needs.

Attack of the clusters
 This increase in scale was happening along many dimensions. Websites started tracking

activity and structure in a very detailed way. Large sets of data appeared: links, social

networks, activity in logs, mapping data.

 Approaches to handle this large traffic and dataset: Scaling up, also known as vertical

scaling, involves adding more resources to an existing server or machine to handle

increased load. This means upgrading the server's hardware capabilities, such as

increasing the CPU power, adding more RAM, or enhancing storage capacity.

 Scaling out, also known as horizontal scaling, involves adding more machines or nodes

to a system, distributing the load across multiple servers. This approach typically

requires a distributed architecture where the workload is shared among various servers.

 A cluster of small machines can use commodity hardware and ends up being cheaper at

these kinds of scales. It can also be more resilient—while individual machine failures

are common, the overall cluster can be built to keep going despite such failures,

providing high reliability.

 Relational databases are traditionally designed for single-machine environments, which

makes scaling them across clusters challenging. The primary issue lies in maintaining

ACID properties—ensuring atomicity, consistency, isolation, and durability—across

multiple nodes. Distributing data via sharding adds complexity, as it can lead to data

hotspots and uneven load distribution. Ensuring transactional integrity and consistency

in a distributed setup often requires complex coordination mechanisms, which can

introduce latency and reduce overall system performance. Additionally, the inherent

design of relational databases to use joins and complex queries becomes less efficient

DEPT OF AIML, JNNCE 4

NOSQL -STUDY MATERIAL

when data is spread across different nodes, further complicating the use of relational

databases in clustered environments.

 This mismatch between relational databases and clusters led some organization to

consider anlternative route to data storage. Two companies in particular—Google and

Amazon—have been very influential. Both were on the forefront of running large

clusters of this kind; furthermore, they were capturing huge amounts of data.

Emergence of NOSQL
 The emergence of NoSQL databases addresses many of the limitations of traditional

relational databases, especially in handling large-scale, distributed, and unstructured

data. NoSQL databases are designed to provide flexible schemas and horizontal

scalability, making them well-suited for modern applications that require quick access

to large volumes of diverse data. Unlike relational databases, which rely on a rigid

schema and ACID transactions, NoSQL databases often sacrifice some aspects of

consistency to achieve higher availability and partition tolerance, as per the CAP

theorem.

 NoSQL databases come in various types, including document stores (e.g., MongoDB),

key-value stores (e.g., Redis), column-family stores (e.g., Cassandra), and graph

databases (e.g., Neo4j), each optimized for specific use cases. They allow for efficient

storage and retrieval of unstructured or semi-structured data and are particularly

effective in handling large-scale, distributed data environments typical of big data

applications. The flexibility, scalability, and performance of NoSQL databases have

made them popular in industries such as social media, e-commerce, and real-time

analytics, where traditional RDBMS solutions struggle to meet the demands of modern,

high-velocity data processing.

 The term "NoSQL" originally emerged to describe databases that do not adhere to the

traditional relational database model, particularly those that do not use Structured

Query Language (SQL) for data management. While "NoSQL" is often interpreted as

"no SQL," it more accurately conveys "not only SQL," highlighting that these databases

can support various data models and query languages beyond the standard relational

approach. The name reflects a broad category of database systems designed to handle

unstructured, semi-structured, and rapidly changing data with greater flexibility and

scalability than traditional relational databases.

Features of NoSQL
The key characteristics of NoSQL databases that highlight their distinct advantages over

traditional relational databases:

1. Schema Flexibility

NoSQL databases allow for dynamic and flexible schemas, enabling users to store unstructured,

semi-structured, or structured data without predefined schemas. This flexibility allows for

easier adaptation to changing data requirements and makes it simpler to incorporate new data

types without extensive modifications to the database.

2. Horizontal Scalability

NoSQL databases are designed to scale out horizontally by adding more servers or nodes to

distribute data across multiple machines. This scalability allows them to handle large volumes

of data and high levels of concurrent user requests, making them well-suited for applications

with rapidly growing datasets.

3. High Availability and Fault Tolerance

DEPT OF AIML, JNNCE 5

NOSQL -STUDY MATERIAL

Many NoSQL databases are built to ensure high availability and fault tolerance. They often

employ data replication across multiple nodes, enabling continuous operation even if some

nodes fail. This design ensures that the database remains accessible and resilient in the face of

hardware failures or other disruptions.

4. Support for Various Data Models

NoSQL databases support multiple data models, including document, key-value, column-

family, and graph models. This variety allows developers to choose the most appropriate model

based on their specific use cases, optimizing data storage and retrieval according to the needs

of their applications.

5. Eventual Consistency

Unlike traditional relational databases that emphasize strong consistency through ACID

transactions, many NoSQL databases adopt an eventual consistency model. This approach

allows for higher availability and partition tolerance, as data updates may not be immediately

consistent across all nodes. Instead, the system guarantees that, given enough time, all updates

will propagate throughout the database, making it suitable for distributed environments where

immediate consistency is less critical.

Polyglot persistence refers to the practice of using multiple data storage technologies, each

optimized for specific use cases, within a single application or system architecture. In the

context of NoSQL databases, this approach allows developers to leverage the strengths of

various NoSQL database types—such as document stores, key-value stores, column-family

stores, and graph databases—to handle diverse data needs efficiently.

Aggregate data models
Aggregate data models are a foundational concept in NoSQL databases, particularly in

document-oriented and key-value stores, where they enable the grouping of related data into

cohesive units known as aggregates. An aggregate typically encompasses all the data related to

a specific entity or concept, encapsulated in a single structure to ensure data integrity and

simplify retrieval. For example, in a document database, a user profile might be stored as a

single document containing all relevant information—such as personal details, preferences, and

activity history—rather than distributing it across multiple tables or collections. This approach

enhances performance by reducing the number of database calls needed to access related data,

thereby minimizing latency.

Aggregates

 Aggregate is a collection of related objects that we wish to treat as a unit. In particular,

it is a unit for data manipulation and management of consistency.

 Typically, we like to update aggregates with atomic operations and communicate with

our data storage in terms of aggregates. This definition matches really well with how

key-value, document, and column-family databases work.

 Dealing in aggregates makes it much easier for these databases to handle operating on

a cluster, since the aggregate makes a natural unit for replication and sharding.

Explanation of the need of aggregate data model :

Consider an e-commerce website; we are going to be selling items directly to customers

over the web, and we will have to store information about users, our product catalog, orders,

shipping addresses, billing addresses, and payment data. A pure RDBMS model would look

like following figure:

DEPT OF AIML, JNNCE 6

NOSQL -STUDY MATERIAL

Data as per the RDBMS design is shown in the following example figure:

everything is properly normalized, so that no data is repeated in multiple tables. We also

have referential integrity.

An aggregate model for the same example is shown in the following figure:

DEPT OF AIML, JNNCE 7

NOSQL -STUDY MATERIAL

A single logical address record appears three times in the example data, but instead of using

IDs it’s treated as a value and copied each time. This fits the domain where we would not

want the shipping address, nor the payment’s billing address, to change. In a relational

database, we would ensure that the address rows aren’t updated for this case, making a new

row instead. With aggregates, we can copy the whole address structure into the aggregate

as we need to.

A typical NoSQL code for the same is:

The link between the customer and the order isn’t within either aggregate—it’s a

relationship between aggregates. Similarly, the link from an order item would cross into a

separate aggregate structure for products. It is more common with aggregates because we

want to minimize the number of aggregates we access during a data interaction. The more

embedded aggregate model is shown in the following figure:

DEPT OF AIML, JNNCE 8

NOSQL -STUDY MATERIAL

Updated NOSQL code is:

Consequences of Aggregate Orientation

Consequences of Aggregate Orientation for RDBMS:

DEPT OF AIML, JNNCE 9

NOSQL -STUDY MATERIAL

 Relational databases typically require a fixed schema, which can lead to complex

designs when trying to model aggregates. This can result in numerous tables and

relationships, making it difficult to manage and evolve the schema over time.

 Aggregates often span multiple tables in RDBMS, necessitating complex JOIN

operations to retrieve related data. This can lead to performance bottlenecks, especially

when dealing with large datasets or frequent queries.

 The need for multiple queries to fetch related data can degrade performance in relational

databases, particularly in scenarios where quick access to aggregate data is essential,

such as in real-time applications.

 Maintaining ACID properties across multiple tables can introduce additional overhead,

making transactions more complex and potentially impacting throughput and latency.

Consequences of Aggregate Orientation for NoSQL:

 NoSQL databases allow for storing aggregates in a single structure (e.g., a

document), enabling straightforward and efficient retrieval of all related data in one

query, thus improving performance.

 The schema-less nature of many NoSQL databases accommodates dynamic data

models, making it easier to adapt to changing requirements without extensive

schema alterations.

 NoSQL databases are designed to handle large volumes of data and high levels of

concurrent requests, allowing them to scale efficiently while managing aggregates.

 By encapsulating related data within a single aggregate, NoSQL databases

minimize or eliminate the need for complex JOIN operations, leading to faster query

performance.

 Many NoSQL systems adopt an eventual consistency model, which can enhance

performance and availability but may introduce challenges in maintaining

consistency across aggregates in distributed environments.

Key-value and Document Data models
 In a key-value data model, data is stored as a collection of key-value pairs, where each

key is unique and maps to a single value. The value can be simple data types (like

strings or integers) or complex data structures (like lists or sets), but it is not directly

accessible by structure—only by the key.

 Key-value stores offer high performance and low latency for read and write operations,

making them ideal for caching, session management, and real-time analytics, where

quick access to data is crucial.

 In a document data model, data is stored in documents, typically in JSON or BSON

format, which allows for nested structures and varying fields within each document.

Each document is self-describing, making it easier to understand and manipulate.

 The document model supports complex data types, including arrays and nested objects,

allowing for richer data representation and better alignment with object-oriented

programming paradigms.

 Document stores provide more advanced querying capabilities than key-value stores,

allowing for searches based on the contents of documents, indexing on specific fields,

and aggregation operations. This makes them suitable for applications that require

complex queries and analytics.

DEPT OF AIML, JNNCE 10

NOSQL -STUDY MATERIAL

Column Family stores
 Column family stores are a type of NoSQL database designed to store data in a format

optimized for distributed data architectures, particularly in handling large volumes of

structured data.

 In column family stores, data is organized into column families, which are collections

of related columns that are grouped together. Each row within a column family can have

a different set of columns, allowing for a more flexible schema compared to traditional

relational databases.

 Column family stores are particularly effective at storing sparse data, where not all rows

have the same set of columns.

 Column family stores are optimized for read and write performance, especially for

queries that involve large datasets

 Popular column family stores include Apache Cassandra, HBase (built on top of

Hadoop), and ScyllaDB. Each of these systems leverages the column-family data model

to deliver high performance and scalability for big data applications.

 Row-oriented and column-oriented stores are two fundamental approaches to

organizing and storing data in databases, each optimized for different use cases. Row-

oriented stores, like traditional relational databases, store data in rows, meaning all

attributes of a single record are stored together. This format is particularly efficient for

transactional workloads that require quick access to complete records, making it ideal

for online transaction processing (OLTP) applications.

 Conversely, column-oriented stores organize data by columns, storing all values for a

single attribute together. This structure is optimized for analytical queries that often

require aggregating or filtering large datasets by specific columns, making it suitable

for online analytical processing (OLAP) applications. As a result, while row-oriented

databases excel in read-write operations involving complete records, column-oriented

stores provide better performance for complex queries and reporting, particularly when

only a subset of columns is needed.

 Skinny rows refer to database rows that contain a small number of columns or attributes,

resulting in a compact data structure. This design typically means that each record stores

only essential information, which can lead to efficient storage and quick retrieval.

 Wide rows, on the other hand, refer to database rows that contain a large number of

columns or attributes. This design is common in scenarios where a single entity or

record needs to store a significant amount of related information, often leading to rows

that are considerably wider than typical.

Aggregate Relationships
 Aggregate relationships are a key concept in NoSQL databases, particularly in

document-oriented and key-value stores, where data is grouped into aggregates that

represent a cohesive unit of related information.

 Aggregate relationships define how different pieces of data within an aggregate relate

to one another. An aggregate is a cluster of related data that can be treated as a single

unit, encapsulating all the necessary information needed to describe a specific entity or

concept, such as a user profile, order, or product.

 In the context of aggregate relationships, an aggregate root is the primary entity

through which the aggregate is accessed and modified. It serves as the entry point for

operations and ensures that all changes to the aggregate maintain its integrity.

 Aggregate oriented databases treat the aggregate as the unit of data-retrieval.

Consequently, atomicity is only supported within the contents of a single aggregate. If

DEPT OF AIML, JNNCE 11

NOSQL -STUDY MATERIAL

you update multiple aggregates at once, you have to deal yourself with a failure partway

through. Relational databases help you with this by allowing you to modify multiple

records in a single transaction, providing ACID guarantees while altering many rows.

Graph Databases
 Graph databases are a type of NoSQL database specifically designed to represent and store

data in graph structures, which consist of nodes (entities) and edges (relationships)

connecting them.

 This model allows for the representation of complex relationships and interconnected data

in a way that is both intuitive and efficient. Unlike traditional relational databases, which

rely on tables and foreign keys to establish relationships, graph databases treat relationships

as first-class citizens.

 They excel in scenarios where relationships are as important as the data itself, such as social

networks, recommendation systems, fraud detection, and network analysis.

 One of the key advantages of graph databases is their ability to perform complex queries

on relationships with high efficiency. By leveraging graph traversal algorithms, they can

quickly retrieve interconnected data without the need for expensive JOIN operations typical

in relational databases.

 This capability allows for real-time analytics and insights into data relationships, enabling

applications to provide richer, context-driven user experiences. Popular graph databases

include Neo4j, Amazon Neptune, and ArangoDB, each offering unique features and

optimizations for handling graph data.

 As data continues to grow in complexity and interconnectivity, graph databases are

increasingly recognized as essential tools for managing and analyzing relational data at

scale.

 An example Graph structure is shown in the following figure:

 With this structure, we can ask questions such as “find the books in the Databases category

that are written by someone whom a friend of mine likes.” Graph databases specialize in

capturing this sort of information—but on a much larger scale than a readable diagram

could capture. This is ideal for capturing any data consisting of complex relationships such

as social networks, product preferences.

DEPT OF AIML, JNNCE 12

NOSQL -STUDY MATERIAL

 The data model of a graph database is fundamentally centered around two primary

components: nodes and edges. Nodes represent entities or objects, such as users, products,

or locations, while edges define the relationships between these entities, indicating how

they are interconnected.

 Each node and edge can have associated properties, which are key-value pairs that provide

additional context or attributes to the entities and relationships. For example, in a social

network graph database, a node might represent a user with properties like name and age,

while an edge could represent a "follows" relationship with properties such as the date the

connection was made.

 This flexible structure allows graph databases to efficiently model complex, interconnected

data and perform sophisticated queries that explore relationships, making them particularly

effective for applications requiring insights into data relationships, such as social networks,

recommendation engines, and fraud detection.

Schemaless databases
 Schemaless databases, often associated with NoSQL systems, are designed to allow for

flexible data storage without the constraints of a predefined schema. This characteristic

enables users to store unstructured, semi-structured, or structured data in a way that can

evolve over time without requiring significant alterations to the database design. Here are

some key features and advantages of schemaless databases:

 They allow developers to add or modify fields within data records without needing to

update the entire database schema.

 Because there are no strict schema requirements, schemaless databases can easily integrate

various data types and formats. This characteristic makes them suitable for handling data

from multiple sources, such as JSON, XML, or even binary data, allowing for the

aggregation of diverse datasets within a single system.

 The lack of a fixed schema facilitates faster development cycles, enabling teams to iterate

quickly as they build and refine applications.

 Schemaless databases are often designed to scale horizontally, meaning they can distribute

data across multiple servers or nodes. This scalability is especially beneficial for

applications experiencing rapid growth or fluctuating workloads.

 Popular examples of schemaless databases include document stores like MongoDB, key-

value stores like Redis, and wide-column stores like Cassandra. These databases leverage

their schemaless nature to provide developers with the flexibility needed to handle a wide

range of applications, from content management systems to real-time analytics.

 A schemaless store also makes it easier to deal with nonuniform data: data where each

record has a different set of fields. Eg code to parse such schemaless stores:

//pseudo code

foreach (Record r in records) {

foreach Field f in r.fields) {

 print(f.name, f.value)

}}

Materialized views
 Materialized views in RDBMS are pre-computed query results stored as database objects.

Unlike regular views, which are virtual and calculated on-the-fly each time they are

accessed, materialized views store the results physically on disk, allowing for faster query

performance, especially for complex aggregations or joins that involve large datasets.

DEPT OF AIML, JNNCE 13

NOSQL -STUDY MATERIAL

 By refreshing these views at specified intervals, either on demand or automatically,

RDBMS can optimize read operations, significantly reducing the load on the underlying

tables during heavy read queries.

 Materialized views are particularly useful in scenarios where data is frequently queried but

not frequently updated, such as in reporting applications or data warehousing, where

performance is critical, and users benefit from quick access to aggregated or summarized

data.

 In NoSQL databases, the concept of materialized views can vary significantly, as these

databases often prioritize flexibility and scalability over strict adherence to relational

concepts.

 Some NoSQL systems provide mechanisms to create materialized views that automatically

maintain and update summarized data based on the underlying data changes.

 This approach enables real-time analytics and reporting without the overhead of

recalculating data on-the-fly. However, the implementation of materialized views in

NoSQL databases may not be as standardized as in RDBMS, requiring developers to design

their own strategies for maintaining and updating these views based on the specific

requirements of their applications.

Modelling for Data Access

Embedding of customers and their orders using key-value stores

Storing of customers and orders separately

DEPT OF AIML, JNNCE 14

NOSQL -STUDY MATERIAL

When modeling for column-family stores, we have the benefit of the columns being ordered,

allowing us to name columns that are frequently used so that they are fetched first.

When using graph databases to model the same data, we model all objects as nodes and

relations within them as relationships; these relationships have types and directional

significance.

DEPT OF AIML, JNNCE 15

NOSQL -STUDY MATERIAL

DEPT OF AIML, JNNCE 16

NOSQL -STUDY MATERIAL

Module II – Notes

Distribution Models
NoSQL databases employ various distribution models to manage data across multiple nodes or

servers effectively. These models are designed to enhance scalability, availability, and

performance, allowing NoSQL systems to handle large volumes of data and high levels of

concurrent requests. Broadly, there are two paths to data distribution: replication and sharding.

Replication takes the same data and copies it over multiple nodes. Sharding puts different data

on different nodes. Replication and sharding are orthogonal technique. Replication comes into

two forms: master-slave and peer-to-peer.

Single Server model
 The single-server model in database systems refers to a deployment architecture where all

data and processing operations occur on a single server instance. This model contrasts with

distributed architectures that involve multiple servers working together to manage data and

handle requests.

 Although a lot of NoSQL databases are designed around the idea of running on a cluster, it

can make sense to use NoSQL with a single-server distribution model if the data model of

the NoSQL store is more suited to the application. Graph databases are the obvious category

here—these work best in a single-server configuration.

Sharding
 Sharding is a database architecture pattern that involves partitioning data across multiple

servers or nodes, enabling horizontal scaling and improving performance for large datasets.

In a sharded database, data is divided into smaller, more manageable pieces called "shards,"

which are distributed across different servers.

 Each shard contains a subset of the data, allowing the database to handle a higher volume

of read and write operations simultaneously.

 This model is particularly beneficial for applications with large datasets, as it helps mitigate

performance bottlenecks and ensures that no single server is overwhelmed by excessive

requests.

 A sharding example is shown in the following figure. Sharding puts different data on

separate nodes, each of which does its own reads and writes

DEPT OF AIML, JNNCE 17

NOSQL -STUDY MATERIAL

 Many NoSQL databases offer auto-sharding, where the database takes on the

responsibility of allocating data to shards and ensuring that data access goes to the right

shard.

 Sharding does little to improve resilience when used alone. Although the data is on different

nodes, a node failure makes that shard’s data unavailable just as surely as it does for a

single-server solution. The resilience benefit it does provide is that only the users of the

data on that shard will suffer; however, it’s not good to have a database with part of its data

missing.

Maste-Slave Replication
 With master-slave distribution, you replicate data across multiple nodes. One node is

designated as the master, or primary. This master is the authoritative source for the data and

is usually responsible for processing any updates to that data. The other nodes are slaves,

or secondaries.

 An example master-slave process is shown in the following figure:

 Master-slave replication is most helpful for scaling when you have a read-intensive dataset.

You can scale horizontally to handle more read requests by adding more slave nodes and

ensuring that all read requests are routed to the slaves

 Read resilience in a master-slave database architecture refers to the ability of the system to

effectively handle read operations even in the presence of failures or high load, leveraging

the characteristics of replication and redundancy inherent in this setup.

 The ability to appoint a slave to replace a failed master means that master-slave replication

is useful even if you don’t need to scale out. Masters can be appointed manually or

automatically. Manual appointing typically means that when you configure your cluster,

you configure one node as the master. With automatic appointment, you create a cluster of

nodes and they elect one of themselves to be the master.

 Replication comes with some alluring benefits, but it also comes with an inevitable dark

side— inconsistency. You have the danger that different clients, reading different slaves,

will see different values because the changes haven’t all propagated to the slaves.

Peer-to-Peer Replication

DEPT OF AIML, JNNCE 18

NOSQL -STUDY MATERIAL

 Peer-to-peer (P2P) replication is a distributed database architecture where each node,

or peer, in the system acts as both a data source and a data sink, allowing for

bidirectional data synchronization between nodes.

 Unlike traditional master-slave configurations, where one server is designated for

writes and others only replicate that data, every peer in a P2P system can accept write

operations and propagate changes to other peers.

 This model enhances availability and fault tolerance, as the failure of any single node

does not disrupt the overall system; other peers can continue to operate and share data.

P2P replication is particularly beneficial in scenarios requiring high availability and

distributed access, such as in decentralized applications and environments with a large

number of geographically dispersed users.

An example scenario of peer-to-peer replication is shown in the following figure:

The biggest complication even with P2P replication is consistency. When you can write to two

different places, you run the risk that two people will attempt to update the same record at the

same time—a write-write conflict. Inconsistencies on read lead to problems but at least they

are relatively transient.

Combining Sharding and Replication
 Combining sharding and replication in a database architecture creates a robust solution

that enhances both scalability and availability.

 In this hybrid model, data is partitioned into smaller, manageable shards that are

distributed across multiple servers, enabling horizontal scaling to accommodate large

datasets and high volumes of concurrent read and write operations. E

 ach shard can then have its own set of replicas, or slave nodes, that maintain copies of

the data for redundancy. This setup allows the system to efficiently handle read requests

by distributing them across multiple replicas while also ensuring that write operations

are directed to the master node of each shard.

 As a result, the combination of sharding and replication effectively mitigates

performance bottlenecks and improves response times, particularly for applications

with varying workloads.

 If we use both master-slave replication and sharding, we have multiple masters, but

each data item only has a single master. Using peer-to-peer replication and sharding is

DEPT OF AIML, JNNCE 19

NOSQL -STUDY MATERIAL

a common strategy for column-family databases. In a scenario like this you might have

tens or hundreds of nodes in a cluster with data sharded over them.

 Combining Master-Slave replication with sharding is shown in the following figure:

Combining Peer-to-peer replication with sharding is shown in the following figure:

Updating Consistency
 Coincidentally, Martin and Pramod are looking at the company website and notice that the

phone number is out of date. Implausibly, they both have update access, so they both go in

at the same time to update the number. This issue is called a write-write conflict: two people

updating the same data item at the same time.

 When the writes reach the server, the server will serialize them—decide to apply one, then

the other. Let’s assume it uses alphabetical order and picks Martin’s update first, then

Pramod’s. Without any concurrency control, Martin’s update would be applied and

immediately overwritten by Pramod’s. In this case Martin’s is a lost update.

 Approaches for maintaining consistency in the face of concurrency are often described as

pessimistic or optimistic. A pessimistic approach works by preventing conflicts from

occurring; an optimistic approach lets conflicts occur, but detects them and takes action to

sort them out.

 The most common pessimistic approach is to have write locks, so that in order to change a

value you need to acquire a lock, and the system ensures that only one client can get a lock

at a time.

 A common optimistic approach is a conditional update where any client that does an update

to test the value just before updating it to see if it’s changed since his last read.

DEPT OF AIML, JNNCE 20

NOSQL -STUDY MATERIAL

 There is another optimistic way to handle a write-write conflict—save both updates and

record that they are in conflict. Pessimistic approaches often severely degrade the

responsiveness of a system to the degree that it becomes unfit for its purpose. This problem

is made worse by the danger of errors—pessimistic concurrency often leads to deadlocks,

which are hard to prevent and debug.

Read Consistency
Let’s imagine we have an order with line items and a shipping charge. The shipping charge is

calculated based on the line items in the order. If we add a line item, we thus also need to

recalculate and update the shipping charge. In a relational database, the shipping charge and

line items will be in separate tables. The danger of inconsistency is that Martin adds a line item

to his order, Pramod then reads the line items and shipping charge, and then Martin updates the

shipping charge. This is an inconsistent read or read-write conflict.

The scenario of read-write conflict is shown in the following figure:

 NoSQL databases don’t support transactions and thus can’t be consistent. Such claim is

mostly wrong because lack of transactions usually only applies to some NoSQL databases,

in particular the aggregate-oriented ones. In contrast, graph databases tend to support ACID

transactions just the same as relational databases. Secondly, aggregate-oriented databases

do support atomic updates, but only within a single aggregate. This means that you will

have logical consistency within an aggregate but not between aggregates.

 Not all data can be put in the same aggregate, so any update that affects multiple aggregates

leaves open a time when clients could perform an inconsistent read. The length of time an

inconsistency is present is called the inconsistency window. A NoSQL system may have a

quite short inconsistency window.

 Replication consistency refers to the degree to which data remains consistent across

multiple replicas in a distributed database system. In architectures utilizing replication—

whether master-slave, peer-to-peer, or multi-master—ensuring that all copies of the data

DEPT OF AIML, JNNCE 21

NOSQL -STUDY MATERIAL

reflect the same state is crucial for maintaining data integrity and application reliability. An

example for the replication consistency is depicted in the following figure:

 With replication, there can be eventually consistency, meaning that at any time nodes

may have replication inconsistencies but, if there are no further updates, eventually all

nodes will be updated to the same value.

 One can tolerate reasonably long inconsistency windows, but you need read your-writes

consistency which means that, once you’ve made an update, you’re guaranteed to continue

seeing that update.

 One way to get this in an otherwise eventually consistent system is to provide session

consistency: Within a user’s session there is read-your-writes consistency. This does mean

that the user may lose that consistency should their session end for some reason or should

the user access the same system simultaneously from different computers, but these cases

are relatively rare.

 There are a couple of techniques to provide session consistency. A common way, and often

the easiest way, is to have a sticky session: a session that’s tied to one node (this is also

called session affinity).

 A sticky session allows you to ensure that as long as you keep read-your-writes consistency

on a node, you’ll get it for sessions too. The downside is that sticky sessions reduce the

ability of the load balancer to do its job.

Relaxing consistency
 Relaxing consistency refers to the practice of intentionally allowing some degree of

inconsistency in a distributed database system to improve performance, availability, and

scalability.

 In traditional database systems, strong consistency is often enforced, ensuring that all

replicas reflect the same state at all times.

 However, in distributed environments, maintaining this strict consistency can introduce

latency and bottlenecks, particularly during network partitions or high-traffic scenarios. By

relaxing consistency, systems can achieve greater responsiveness and fault tolerance while

still meeting the needs of many applications.

DEPT OF AIML, JNNCE 22

NOSQL -STUDY MATERIAL

CAP Theorem
The CAP theorem, also known as Brewer's theorem, is a fundamental principle in distributed

systems that states that it is impossible for a distributed data store to simultaneously provide

all three of the following guarantees:

1. Consistency (C)

Consistency ensures that every read operation returns the most recent write for a given piece

of data. In other words, all nodes in the distributed system view the same data at the same time.

2. Availability (A)

Availability guarantees that every request to the system receives a response, regardless of

whether it is successful or contains the latest data. This means that the system is operational

and accessible, even if some nodes are down or unreachable

3. Partition Tolerance (P)

Partition tolerance ensures that the system continues to operate even in the presence of network

partitions, where communication between some nodes is lost. In a distributed environment,

network failures can occur, and partition tolerance guarantees that the system can still function,

allowing for either consistent or available responses.

According to the CAP theorem, a distributed database can only achieve two of the three

guarantees at any given time:

• CP (Consistency and Partition Tolerance): Systems that prioritize consistency and

partition tolerance may sacrifice availability during network partitions. An example is

a system that returns errors or unavailable responses if it cannot ensure that all nodes

are consistent.

• AP (Availability and Partition Tolerance): Systems that focus on availability and

partition tolerance may allow for eventual consistency, meaning that some reads may

return stale data while the system continues to operate. Examples include systems like

Cassandra and DynamoDB, which prioritize availability.

• CA (Consistency and Availability): It is impossible to achieve consistency and

availability in the presence of network partitions. Systems that claim to provide both

will inevitably fail during network issues.

CAP theorem can be summarized with following figure:

DEPT OF AIML, JNNCE 23

NOSQL -STUDY MATERIAL

Relaxing durability
 Durability is a key property of database systems that ensures once a transaction has

been committed, it remains permanently recorded in the system, even in the event of a

failure such as a power outage or system crash. This property is typically achieved

through mechanisms like write-ahead logging and data replication, which safeguard the

integrity and availability of data.

 If a database can run mostly in memory, apply updates to its in-memory representation,

and periodically flush changes to disk, then it may be able to provide substantially

higher responsiveness to requests.

 A big website may have many users and keep temporary information about what each

user is doing in some kind of session state. There’s a lot of activity on this state, creating

lots of demand, which affects the responsiveness of the website.

 Another example of relaxing durability is capturing telemetric data from physical

devices. It may be that you’d rather capture data at a faster rate, at the cost of missing

the last updates should the server go down.

 Replication durability refers to the assurance that data changes made in a distributed

system will persist even in the face of failures, thanks to the mechanisms in place to

replicate data across multiple nodes or servers.

Quorums
A quorum is a minimum number of votes or acknowledgments required from nodes in a

distributed system to consider a read or write operation valid and successful. This mechanism

helps ensure consistency and availability in the face of network partitions or node failures.

There are typically two types of quorums used in distributed systems:

• Write Quorum (W): The minimum number of replicas that must acknowledge a write

operation before it is considered successful. This ensures that the data is sufficiently

replicated across the system to maintain consistency.

• Read Quorum (R): The minimum number of replicas that must be accessed for a read

operation to return a valid result. This ensures that the read operation reflects the most

recent write, maintaining consistency from the user’s perspective.

This relationship between the number of nodes you need to contact for a read (R), those

confirming a write (W), and the replication factor (N) can be captured in an inequality:

W>N/2

R+W>N

Business and System Transactions
 Business transactions refer to meaningful activities or interactions that occur in the context

of a business operation. These transactions typically involve the exchange of goods,

services, or information and have a direct impact on the organization's financials or

operational processes. Examples include sales transactions, purchase orders, inventory

management, and customer interactions.

 System transactions, on the other hand, refer to the operations performed by a database

management system (DBMS) to ensure the integrity and consistency of data during

business transactions. These transactions are fundamental to the functioning of the database

and follow the ACID (Atomicity, Consistency, Isolation, Durability) properties to guarantee

reliable processing.

 Managing transactions is achieved through version stamp: a field that changes every time

the underlying data in the record changes. When you read the data you keep a note of the

version stamp, so that when you write data you can check to see if the version has changed.

DEPT OF AIML, JNNCE 24

NOSQL -STUDY MATERIAL

 There are various ways you can construct your version stamps. You can use a counter,

always incrementing it when you update the resource. Counters are useful since they make

it easy to tell if one version is more recent than another. On the other hand, they require the

server to generate the counter value, and also need a single master to ensure the counters

aren’t duplicated.

 Another approach is to create a GUID, a large random number that’s guaranteed to be

unique. These use some combination of dates, hardware information, and whatever other

sources of randomness they can pick up. The nice thing about GUIDs is that they can be

generated by anyone and you’ll never get a duplicate; a disadvantage is that they are large

and can’t be compared directly for recentness.

 A third approach is to make a hash of the contents of the resource. With a big enough hash

key size, a content hash can be globally unique like a GUID and can also be generated by

anyone; the advantage is that they are deterministic—any node will generate the same

content hash for same resource data. However, like GUIDs they can’t be directly compared

for recentness, and they can be lengthy.

 A fourth approach is to use the timestamp of the last update. Like counters, they are

reasonably short and can be directly compared for recentness, yet have the advantage of

not needing a single master. Multiple machines can generate timestamps—but to work

properly, their clocks have to be kept in sync. One node with a bad clock can cause all sorts

of data corruptions.

Version stamps on Multiple Nodes
 Version stamps on multiple nodes are a crucial mechanism in distributed systems, enabling

the tracking and management of data versions across different replicas or nodes. This

approach helps maintain consistency, resolve conflicts, and ensure data integrity in

environments where concurrent updates may occur.

 In a distributed system, each node maintains its own version stamp for data items, which

can be either logical timestamps, vector clocks, or physical timestamps. When a node

performs an update to a data item, it associates the update with its current version stamp.

This versioning allows the system to track changes and determine the most recent version

of the data across all nodes.

 Logical Timestamps: Each update is assigned a unique logical timestamp based on the order

of operations. If two nodes perform updates concurrently, their timestamps help in

determining the sequence of updates.

 Vector Clocks: Each node maintains a vector clock that counts the number of updates it has

made and tracks updates from other nodes. When a node updates a data item, it increments

its own entry in the vector clock and may also compare its vector with others to resolve

conflicts.

 Physical Timestamps: In systems using physical timestamps, each update is time-stamped

based on real-time. However, this approach can face challenges related to clock

synchronization across nodes.

DEPT OF AIML, JNNCE 25

NOSQL -STUDY MATERIAL

Module-3 Notes

Map-Reduce
MapReduce is a programming model and processing framework for distributed computing,

invented by Google, that allows for processing large data sets with a distributed algorithm on

a cluster. The MapReduce framework operates primarily in two phases: the Map phase and the

Reduce phase.

 Map Function: The Map function processes a key/value pair to generate a set of

intermediate key/value pairs. It is applied to each input record in parallel.

 Reduce Function: The Reduce function merges all intermediate values associated with

the same intermediate key. It processes each group of intermediate key/value pairs to

generate the final output.

Workflow:

1. Splitting: The input data is split into manageable chunks, usually by a distributed file

system like Hadoop Distributed File System (HDFS).

2. Mapping: The Map function is applied to each chunk, generating intermediate

key/value pairs.

3. Shuffling and Sorting: The framework sorts and groups the intermediate data by key.

4. Reducing: The Reduce function is applied to each group of intermediate data to

produce the final output.

5. Output: The final results are written to an output store, which can be HDFS or another

distributed storage system.

Basic Map-Reduce
The first stage in a map-reduce job is the map. A map is a function whose input is a single

aggregate and whose output is a bunch of keyvalue pairs. In this case, the input would be an

order. The output would be key-value pairs corresponding to the line items. Each one would

have the product ID as the key and an embedded map with the quantity and price as the values

DEPT OF AIML, JNNCE 26

NOSQL -STUDY MATERIAL

A map function reads records from the database and emits key-value pairs

A reduce function takes several key-value pairs with the same key and aggregates them

into one.

Partitioning and Combining
In the MapReduce framework, partitioning and combining play crucial roles in optimizing the

processing of data. Partitioning involves distributing the intermediate key/value pairs generated

by the map phase to reducers in an efficient manner. This is typically handled by a partitioner

function, which determines the reducer that will handle each intermediate key. A common

approach is to use a hash function on the key to ensure an even distribution across reducers,

thus balancing the load and avoiding bottlenecks. Combining, on the other hand, is an

optimization technique where a combiner function, which is essentially a mini-reducer, is

applied to the intermediate data before it is sent to the reducers. This helps to reduce the amount

of data shuffled across the network by combining the intermediate key/value pairs locally on

each mapper. By performing local aggregation, combiners significantly reduce the volume of

data transfer, leading to faster and more efficient processing. Together, partitioning and

combining help to enhance the performance and scalability of the MapReduce framework by

optimizing data distribution and minimizing network congestion.

Example:

DEPT OF AIML, JNNCE 27

NOSQL -STUDY MATERIAL

Partitioning allows reduce functions to run in parallel on different keys

Combining reduces data before sending it across the network

A combiner function is, in essence, a reducer function—indeed, in many cases the same

function can be used for combining as the final reduction. The reduce function needs a special

shape for this to work: Its output must match its input. We call such a function a combinable

reducer.

Not all reduce functions are combinable. Eg:

DEPT OF AIML, JNNCE 28

NOSQL -STUDY MATERIAL

This reduce function, which counts how many unique customers order a particular tea, is not

combinable

Composing Map-Reduce Calculations
Composing MapReduce calculations involves chaining multiple MapReduce jobs together to

perform complex data processing tasks that cannot be accomplished with a single MapReduce

job. Each job in the chain takes the output of the previous job as its input, allowing for a series

of transformations and aggregations on the data. This composition is essential for tasks like

multi-step data processing pipelines, where intermediate results from one phase need further

processing in subsequent phases. For example, in a web log analysis scenario, the first

MapReduce job might filter and clean the log data, the second job could aggregate the data by

user sessions, and the third job might compute statistics on the session data. Effective

composition requires careful planning of the intermediate data format and efficient handling of

data transfer between jobs. By breaking down complex calculations into a sequence of simpler

MapReduce jobs, developers can leverage the power of distributed computing to handle large-

scale data processing in a modular and manageable way. This approach also improves fault

tolerance, as each stage can be independently retried and debugged.

Eg:

When calculating averages, the sum and count can be combined in the reduce calculation, but

the average must be calculated from the combined sum and count.

DEPT OF AIML, JNNCE 29

NOSQL -STUDY MATERIAL

When making a count, each map emits 1, which can be summed to get a total

A Two Stage Map-Reduce Example
A two-stage MapReduce process involves executing two consecutive MapReduce jobs to

handle complex data processing tasks. In the first stage, the map function processes the raw

input data to generate intermediate key/value pairs, and the reduce function aggregates these

pairs. For instance, in a word count scenario, the first stage's map function emits each word

with a count of one, while the reduce function sums the counts for each word. The output of

this stage, consisting of the total counts for each word, serves as the input for the second stage.

In the second stage, another map function can further process these aggregated results, such as

grouping words by their initial letter or filtering out infrequent words. The reduce function in

this stage then performs the final aggregation or transformation, producing the final output.

This two-stage approach allows for breaking down complex calculations into manageable

steps, enhancing scalability and fault tolerance in distributed computing environments.

Eg:

A calculation broken down into two map-reduce steps, which will be expanded in the

next three figures

DEPT OF AIML, JNNCE 30

NOSQL -STUDY MATERIAL

Creating records for monthly sales of a product

The second stage mapper creates base records for year-on-year comparisons.

DEPT OF AIML, JNNCE 31

NOSQL -STUDY MATERIAL

The reduction step is a merge of incomplete records

Incremental Map-Reduce
 Incremental MapReduce is an extension of the traditional MapReduce framework

designed to handle dynamic data by processing only the changes in the dataset rather

than reprocessing the entire dataset.

 This approach is particularly useful for applications where data is continuously updated,

such as in real-time analytics or iterative machine learning algorithms.

 In incremental MapReduce, the framework identifies and processes only the newly

added or modified data since the last computation.

 The map function processes these changes to generate updated intermediate key/value

pairs, while the reduce function merges these updates with the previously computed

results.

 By focusing on the incremental changes, this method significantly reduces

computational overhead and improves efficiency, allowing for faster and more

responsive data processing.

 This approach also enhances resource utilization and minimizes latency, making it ideal

for applications requiring frequent updates and real-time insights.

 The map stages of a map-reduce are easy to handle incrementally—only if the input

data changes does the mapper need to be rerun. Since maps are isolated from each other,

incremental updates are straightforward.

Key-Value Databases
Key-value databases are a type of NoSQL database that store data as a collection of key-

value pairs, where each key is unique and directly associated with a specific value. This

simple and flexible data model allows for high performance and scalability, making key-

value databases ideal for applications that require fast read and write operations, such as

caching, session management, and real-time analytics. The value in a key-value database

can be any type of data, ranging from simple strings to complex objects like JSON or binary

data. Operations are performed using keys, which enables quick retrieval of values without

the need for complex query language or table scans. Examples of key-value databases

DEPT OF AIML, JNNCE 32

NOSQL -STUDY MATERIAL

include Redis, DynamoDB, and Riak. These databases are particularly well-suited for

distributed systems, as they can easily scale horizontally by partitioning data across

multiple nodes, ensuring high availability and fault tolerance.

Eg:

Key-Value Store terminologies
Key-value stores have several important terminologies that define their structure,

operations, and performance characteristics. Here are some key terms:

 Key: A unique identifier used to access a specific value in the key-value store. Keys are

typically strings but can also be other data types.

 Value: The data associated with a key in the key-value store. Values can be simple data

types (like strings or numbers) or more complex structures (like JSON objects or binary

blobs).

 Bucket/Bucket: A logical grouping or namespace for key-value pairs within the

database. It helps organize and isolate data within a larger key-value store. Some

systems use terms like "bucket" or "table."

 Get: An operation to retrieve the value associated with a given key. This is one of the

fundamental operations in a key-value store.

 Put: An operation to insert or update the value associated with a given key. This

operation writes data to the key-value store.

 Delete: An operation to remove the key-value pair from the store based on the given

key.

 TTL (Time to Live): A setting that defines the lifespan of a key-value pair. After the

TTL expires, the key-value pair is automatically deleted from the store.

 Node: An individual server or instance in a distributed key-value store. Multiple nodes

work together to store and manage data.

 Cluster: A collection of nodes that work together as a single key-value store. Clustering

improves scalability and fault tolerance.

 Distributed Hash Table (DHT): A decentralized data structure used to distribute and

locate data across nodes in a key-value store.

Key-Value Store Features
Key-value stores are a type of NoSQL database that offer several distinct features, making

them suitable for various applications that require fast, flexible, and scalable data storage.

Here are some key features of key-value stores:

 Simplicity: Key-value stores have a straightforward data model where data is stored as

a collection of key-value pairs. This simplicity allows for easy implementation and

quick access to data.

DEPT OF AIML, JNNCE 33

NOSQL -STUDY MATERIAL

 High Performance: Due to their simple structure, key-value stores can achieve high

read and write performance. Operations like get, put, and delete are optimized for speed,

making these databases ideal for applications that require rapid data access.

 Scalability: Key-value stores are designed to scale horizontally by adding more nodes

to the system. Data can be partitioned and distributed across multiple nodes, allowing

the database to handle large volumes of data and high traffic loads efficiently.

 Flexibility: Values in key-value stores can be of various types, including strings,

numbers, JSON objects, or binary data. This flexibility allows developers to store a

wide range of data types without the constraints of a rigid schema.

 Distributed Architecture: Many key-value stores are built to operate in distributed

environments. They provide mechanisms for data replication and partitioning, ensuring

high availability and fault tolerance.

 In-Memory Capabilities: Some key-value stores, like Redis, offer in-memory data

storage, which significantly boosts read and write speeds by keeping data in RAM. This

is particularly useful for caching and real-time applications.

 Eventual Consistency: Key-value stores often adopt an eventual consistency model,

where updates to the data are propagated to all nodes over time. This model provides a

good balance between consistency and availability in distributed systems.

 Replication and High Availability: Key-value stores often support data replication

across multiple nodes to ensure data durability and high availability. This replication

can be synchronous or asynchronous, depending on the desired consistency level.

 Support for Large Data Volumes: Key-value stores can handle large amounts of data

by distributing it across multiple nodes. This capability makes them suitable for big

data applications.

 Schema-Free: Key-value stores do not require a fixed schema, allowing for dynamic

and flexible data models. Developers can easily add or modify data without schema

migrations.

CRUD operations in Riak
Riak is a distributed NoSQL database designed for high availability, fault tolerance, and

scalability. CRUD operations (Create, Read, Update, Delete) in Riak are straightforward,

leveraging its key-value store nature. Here’s an overview of how to perform these operations:

Connecting to Riak:

Creating buckets and objects:

DEPT OF AIML, JNNCE 34

NOSQL -STUDY MATERIAL

Reading objects from Riak:

Updating objects in Riak:

Deleting objects:

Working with complex objects:

Scaling in Riak
 Riak is designed to scale horizontally by adding more nodes to a cluster, allowing it to

handle large volumes of data and increasing traffic efficiently. Data is automatically

distributed across the cluster using consistent hashing and virtual nodes (vnodes), which

ensures even distribution and balancing of data. Each node in the cluster manages

multiple vnodes, and when new nodes are added, Riak automatically redistributes data

to maintain balance. This horizontal scalability allows Riak to grow seamlessly without

DEPT OF AIML, JNNCE 35

NOSQL -STUDY MATERIAL

affecting the performance or availability of the system. The cluster's data is replicated

across multiple nodes for redundancy, and the replication factor can be adjusted based

on the desired level of fault tolerance. Riak's eventual consistency model ensures that

updates to data are eventually propagated to all replicas, while vector clocks help

resolve conflicts that might occur due to network partitions or concurrent writes.

 Riak also provides fault tolerance and automatic recovery mechanisms. If a node fails,

the system continues to serve data from other replicas, ensuring high availability. Riak

can re-replicate data to restore the desired replication factor after a failure. Additionally,

the system is optimized for both read and write scalability. Write-heavy workloads

benefit from Riak's ability to handle concurrent writes across multiple nodes, while

read-heavy applications can take advantage of Riak’s ability to read from any replica,

reducing latency. Through its quorum-based reads and writes, Riak offers flexibility in

balancing consistency and availability, depending on the application's needs. This

makes Riak a robust and scalable solution for large-scale distributed applications.

Suitable use cases:
 Storing Session Information - Storing session information in a key-value store is a

common and efficient method for managing user sessions in web applications. In this

approach, each user session is represented as a unique key (often a session ID), with

the associated session data (such as user preferences, authentication tokens, or

temporary data) stored as the value. The key-value store provides fast access to session

data, as retrieving a session is a simple lookup by key. This setup is particularly well-

suited for distributed systems because key-value stores like Redis or Riak can scale

horizontally, ensuring that session data is available across multiple servers. By storing

session information in-memory (for example, in Redis), applications can achieve low-

latency access, making it ideal for real-time applications. Additionally, many key-value

stores support features like TTL (Time to Live), which automatically expires session

data after a predefined period, enhancing security by cleaning up stale sessions. The

simplicity and performance of key-value stores make them an excellent choice for

managing session information in high-traffic applications.

 User Profiles, Preferences- Storing user profiles and preferences in a key-value store

is an effective way to manage and quickly retrieve personalized data for users in web

or mobile applications. In this model, each user profile can be stored with a unique key,

typically a user ID, and the corresponding value contains the user’s preferences,

settings, and other personalized data in the form of a structured format like JSON or

serialized objects. This approach allows for fast access to user-specific information, as

the key-value store is optimized for quick lookups by key. Key-value stores also scale

easily to handle millions of users and can store complex, nested data such as theme

preferences, language settings, or recently viewed items. Additionally, the flexibility of

key-value stores means that as user preferences evolve, new attributes can be added

without a rigid schema, providing adaptability in dynamic applications. The ability to

quickly retrieve and update these profiles makes key-value stores an excellent choice

for personalized experiences, particularly when performance and scalability are

essential.

 Shopping Cart Data-Using a key-value store to manage shopping cart data is a popular

approach due to its simplicity and high performance. In this model, each shopping cart

is associated with a unique key, typically a user session ID or user ID, and the value

DEPT OF AIML, JNNCE 36

NOSQL -STUDY MATERIAL

contains the items added to the cart, along with relevant data such as quantities, product

IDs, prices, and any discounts or promotions. The key-value store allows for fast

retrieval and updates to the shopping cart, making it ideal for real-time applications

where users may add, remove, or modify items frequently. This design also scales

efficiently, as it can handle thousands or even millions of carts across distributed

systems. Many key-value stores support features like TTL (Time to Live), which can

automatically expire carts that remain inactive for a certain period, helping to manage

resources and prevent stale data. The flexibility of key-value stores also enables

seamless handling of cart data with varying structures, providing adaptability as the

shopping cart evolves with different user interactions and business requirements.

When not to use Key-Value stores
 Relationships among Data-Key-value stores are not ideal for scenarios that require

complex relationships among data, such as those involving many-to-many, one-to-

many, or hierarchical relationships. These types of relationships often require JOIN

operations or the ability to link data across multiple tables or entities, which is

inherently challenging in a key-value store. Since key-value databases are designed for

simplicity, with each key mapped to a single value, they do not support querying across

multiple keys or efficiently managing interconnected data. For example, if you need to

represent relationships like a user and their orders, or products and their categories, key-

value stores lack the inherent mechanisms to easily model and query these relationships.

This makes them less suitable for use cases that require complex queries, relational

integrity, or the need to enforce foreign key constraints. In such cases, relational

databases or graph databases are better suited as they provide powerful querying

capabilities and built-in support for relationships between data.

 Multioperation Transactions-Key-value stores are not well-suited for multi-operation

transactions that require strong consistency across multiple keys or data entities. In

scenarios where multiple operations need to be executed atomically (e.g., transferring

funds between accounts, updating multiple related records, or enforcing complex

business rules across various entities), key-value stores typically fall short. These

databases are designed to perform single key-value operations efficiently but do not

natively support ACID (Atomicity, Consistency, Isolation, Durability) properties across

multiple operations. While some key-value stores offer basic support for transactions,

they generally lack the sophistication and reliability required for complex, multi-step

transactions involving several keys or data models. This makes them less suitable for

applications that rely on strict transaction management, such as banking systems or

applications with complex data integrity requirements. In such cases, relational

databases or more specialized systems like distributed databases with transaction

support (e.g., Google Spanner) are better alternatives.

 Query by Data-Key-value stores are not suitable for querying data based on non-key

attributes, as they are designed to retrieve values using a specific key. They do not

natively support complex queries or secondary indexes that allow for filtering, sorting,

or searching by data fields other than the key. In scenarios where you need to perform

queries like "find all users with a specific age" or "retrieve products within a certain

price range," key-value stores are limited because they lack built-in query mechanisms

or advanced indexing features. These types of queries typically require scanning

through all data or using additional processing, which can be inefficient and time-

DEPT OF AIML, JNNCE 37

NOSQL -STUDY MATERIAL

consuming, especially as the data set grows. For use cases requiring flexible querying

capabilities, such as filtering, range queries, or joining data across different fields,

relational databases or document-based NoSQL systems with richer querying support

(e.g., MongoDB or SQL databases) are more appropriate.

 Operations by Sets - Key-value stores are not well-suited for operations that involve

sets or collections of data, such as union, intersection, or difference, especially when

the data is spread across multiple keys. Since key-value databases store data as simple

key-value pairs, they lack native support for set operations or the ability to treat values

as collections that can be manipulated in bulk. For example, performing set-based

operations like finding common elements between two sets of data, or combining

multiple sets, would require manually retrieving and processing each key-value pair

individually, which can be inefficient and cumbersome. Furthermore, key-value stores

typically do not support advanced data types like lists or sets in the way that document-

oriented databases or graph databases do. For applications requiring frequent and

efficient set operations, such as collaborative filtering, tagging systems, or social

network analysis, databases that provide native support for sets or collections, such as

Redis (with its set data type) or graph databases, are more suitable.

DEPT OF AIML, JNNCE 38

NOSQL -STUDY MATERIAL

Module-4 Notes

Document Databases
Document databases are a type of NoSQL database that store, retrieve, and manage data in the

form of documents, typically using formats like JSON, BSON, or XML. Unlike relational

databases that store data in tables with predefined schemas, document databases are schema-

less or have flexible schemas, allowing for the storage of varied data structures in the same

collection. Each document in a document database is a self-contained unit of data, and

documents can contain nested structures, such as arrays or sub-documents, making them highly

flexible and suitable for hierarchical or complex data. Popular document databases like

MongoDB and CouchDB enable fast querying, indexing, and scalability, and they support

features like full-text search, aggregation, and secondary indexing. Because of their flexible

schema and ability to scale horizontally across distributed systems, document databases are

ideal for applications with rapidly changing data structures, such as content management

systems, e-commerce platforms, and real-time analytics. Eg:

Features of Document oriented databases
Document-oriented databases offer several key features that make them suitable for flexible

and scalable data management in modern applications. Here are some of the important features:

 Schema Flexibility: Document databases do not require a predefined schema, allowing

for dynamic and flexible data storage. Each document can have its own structure, with

varying fields and data types, making it easier to handle changing data models.

 JSON/BSON/XML Storage: Documents are typically stored in formats like JSON,

BSON, or XML, which are human-readable and allow for complex, nested data

structures. This makes it easy to represent hierarchical data and reduces the need for

normalization, as opposed to relational databases.

 Indexing and Querying: Document databases support powerful indexing mechanisms,

enabling efficient searches on various fields, including those within nested structures.

Complex queries, including range queries and full-text search, can be executed quickly.

 Scalability: Document databases are designed to scale horizontally by distributing data

across multiple servers or nodes. This makes them suitable for handling large volumes

of data and high traffic, especially in distributed systems.

 Data Aggregation: Many document databases, such as MongoDB, provide built-in

aggregation frameworks that allow for complex data analysis and transformation. This

is useful for analytics and reporting without needing to export data to an external

processing system.

DEPT OF AIML, JNNCE 39

NOSQL -STUDY MATERIAL

 High Availability and Fault Tolerance: Document databases typically support

replication and automatic failover, ensuring high availability and data durability. Data

is replicated across multiple nodes to provide fault tolerance, so the system continues

to function even in the event of hardware failures.

 Atomic Operations: Some document databases support atomic operations, allowing

modifications to be made to individual documents in a way that ensures consistency.

For example, MongoDB supports atomic updates on individual documents, providing

reliable data integrity.

 Ease of Integration: Due to their flexible schema and use of JSON-like data formats,

document databases are well-suited for integration with web applications, APIs, and

microservices, making them a popular choice for modern software architectures.

MongoDB
MongoDB is a popular, open-source, document-oriented NoSQL database designed for

scalability, flexibility, and high performance. It stores data in a JSON-like format called BSON

(Binary JSON), which allows for complex, nested structures that can evolve over time without

requiring a fixed schema. MongoDB supports horizontal scaling through sharding, where data

is distributed across multiple servers, ensuring high availability and the ability to handle large

datasets and high-traffic applications. Its powerful query language allows for efficient data

retrieval, including support for full-text search, aggregation, and geospatial queries. MongoDB

also provides features like automatic failover, replica sets for data redundancy, and ACID-

compliant transactions for reliable data consistency. Because of its flexibility and scalability,

MongoDB is widely used in applications ranging from real-time analytics and content

management systems to e-commerce platforms and mobile applications.

CAP Theorem and MongoDB
The CAP Theorem (Consistency, Availability, Partition Tolerance) states that a distributed

system can only guarantee two of the three properties at the same time: Consistency (every

read operation returns the most recent write), Availability (every request will receive a

response, even if it’s not the most up-to-date data), and Partition Tolerance (the system

continues to operate despite network or hardware failures that split the system into partitions).

MongoDB, being a distributed database, primarily adheres to the principles of the CA

(Consistency and Availability) model under normal conditions, ensuring that all nodes in a

replica set are consistent with each other and that the system remains available for read/write

operations. However, MongoDB can be configured to prioritize Partition Tolerance over

consistency in situations where network partitions occur. By default, MongoDB uses eventual

consistency, which can lead to temporary inconsistencies across replica sets until data is

synchronized, making it better suited for situations where availability and partition tolerance

are more critical than strict consistency, especially in distributed systems with high traffic.

Availability in MongoDB
In MongoDB, replica sets are a group of MongoDB servers that maintain the same data set,

providing redundancy and high availability. A replica set consists of a primary node and one or

more secondary nodes. The primary node handles all write operations, while the secondary

nodes replicate the data from the primary. If the primary node fails, one of the secondary nodes

can be automatically promoted to become the new primary, ensuring that the database remains

available and minimizing downtime.

DEPT OF AIML, JNNCE 40

NOSQL -STUDY MATERIAL

Key Features of Replica Sets:
 Automatic Failover: If the primary node becomes unavailable, the replica set will

automatically elect a new primary from the secondary nodes to ensure continuous

availability.

 Data Replication: Data is replicated from the primary to the secondaries

asynchronously, meaning the secondaries may lag slightly behind the primary. This

provides fault tolerance and ensures that there are multiple copies of the data across

different nodes.

 Read and Write Distribution: By default, writes are directed to the primary node, while

reads can be directed to either the primary or secondary nodes. However, this can be

configured to prioritize reading from the primary or only from secondaries.

 Consistency and Durability: MongoDB supports strong consistency for write

operations on the primary, while reads can be configured for consistency or availability

depending on the application’s needs. Replica sets help ensure data durability and

protection against data loss in case of server failures.

 Configurable Write Concern and Read Concern: MongoDB allows fine-grained control

over how many nodes must acknowledge a write or read operation, offering a balance

between consistency, availability, and performance.

Eg:

Replica set configuration with higher priority assigned to nodes in the same datacenter

The application writes or reads from the primary (master) node. When connection is

established, the application only needs to connect to one node (primary or not, does not matter)

in the replica set, and the rest of the nodes are discovered automatically. When the primary

node goes down, the driver talks to the new primary elected by the replica set

MongoDB CRUD operations
//To list all databases
show dbs;

//To create or use databases
use blog;

DEPT OF AIML, JNNCE 41

NOSQL -STUDY MATERIAL

//Creating a collection (table) inside databases
db.createCollection("posts");

//Inserting documents (Create)
db.posts.insertOne({
 title: "Post Title 1",
 body: "Body of post.",
 category: "News",
 likes: 1,
 tags: ["news", "events"],
 date: Date()
})

db.posts.insertMany([
 {
 title: "Post Title 2",
 body: "Body of post.",
 category: "Event",
 likes: 2,
 tags: ["news", "events"],
 date: Date()
 },
 {
 title: "Post Title 3",
 body: "Body of post.",
 category: "Technology",
 likes: 3,
 tags: ["news", "events"],
 date: Date()
 },
 {
 title: "Post Title 4",
 body: "Body of post.",
 category: "Event",
 likes: 4,
 tags: ["news", "events"],
 date: Date()
 }
])

//Retrieval operations
db.posts.find()
db.posts.findOne()
db.posts.find({category: "News"})

DEPT OF AIML, JNNCE 42

NOSQL -STUDY MATERIAL

db.posts.find({}, {title: 1, date: 1})
db.posts.find({}, {_id: 0, title: 1, date: 1})
db.posts.find({}, {category: 0})

//Update operations
db.posts.updateOne({ title: "Post Title 1" }, { $set: { likes: 2 } })
db.posts.updateOne(
 { title: "Post Title 5" },
 {
 $set:
 {
 title: "Post Title 5",
 body: "Body of post.",
 category: "Event",
 likes: 5,
 tags: ["news", "events"],
 date: Date()
 }
 },
 { upsert: true }
)

db.posts.updateMany({}, { $inc: { likes: 1 } })

//Delete operations
db.posts.deleteOne({ title: "Post Title 5" })

db.posts.deleteMany({ category: "Technology" })

Module-4 (Contd..)

Availability
MongoDB offers several options to ensure high availability:

1. Replica Sets:

o Primary and Secondary Nodes: In a replica set, data is replicated across multiple

nodes. One node is the primary that receives all write operations, while

secondary nodes replicate the data from the primary and can serve read

operations.

o Automatic Failover: If the primary node goes down, an eligible secondary node

is automatically promoted to primary, ensuring that the database remains

available.

2. Sharding:

DEPT OF AIML, JNNCE 43

NOSQL -STUDY MATERIAL

o Data Distribution: Sharding distributes data across multiple servers or clusters,

which can help in scaling out horizontally. Each shard is a replica set, ensuring

data redundancy and high availability.

o Query Routing: MongoDB uses a query router (mongos) to direct operations to

the correct shard, which helps maintain performance and availability.

3. Cloud Deployment:

o MongoDB Atlas: A fully managed cloud database service that offers automated

backups, monitoring, and alerts. Atlas ensures high availability through built-in

replication and failover mechanisms across multiple regions and availability

zones.

4. Backup and Recovery:

o Regular Backups: Regularly scheduled backups and point-in-time recovery

options help in maintaining data integrity and availability in case of failures.

o Snapshot and Continuous Backup: Cloud providers like MongoDB Atlas offer

continuous backups and snapshot capabilities, enabling quick recovery from

data loss incidents.

5. Geographical Distribution:

o Multi-Region Deployment: Deploying replica sets across different geographic

regions can protect against regional outages, ensuring that your database

remains available globally.

6. Maintenance and Upgrades:

o Rolling Upgrades: MongoDB supports rolling upgrades, allowing you to update

the database software without significant downtime.

Replica-sets
A MongoDB replica set is a group of MongoDB instances that maintain the same data set,

providing redundancy and high availability. Here’s a detailed overview of how replica sets

work:

Components of a Replica Set

1. Primary Node:

o Handles all write operations.

o Only one primary per replica set.

o Clients can read from the primary.

2. Secondary Nodes:

o Replicate the data from the primary node.

o Can serve read operations if configured.

o If the primary fails, an eligible secondary is elected as the new primary.

3. Arbiter:

o Does not store data.

o Participates in elections to break ties but does not become a primary.

Key Features of Replica Sets

1. Data Replication:

o The primary node records all changes in the oplog (operations log).

o Secondary nodes replicate these changes asynchronously from the oplog to

maintain the same dataset.

2. Automatic Failover:

o If the primary node becomes unavailable, the replica set members initiate an

election process to elect a new primary from the secondary nodes.

DEPT OF AIML, JNNCE 44

NOSQL -STUDY MATERIAL

o The new primary is chosen based on factors like node priority and freshness of

data.

3. Read Preference:

o Clients can specify read preferences to read from the primary or secondary

nodes based on their requirements.

o Read preferences include: primary, primaryPreferred, secondary,

secondaryPreferred, and nearest.

4. Data Consistency:

o By default, MongoDB ensures strong consistency for writes by acknowledging

write operations only when the data is written to the primary.

o Read operations can be configured for eventual consistency by reading from

secondary nodes.

Working

The application writes or reads from the primary (master) node. When connection is

established, the application only needs to connect to one node (primary or not, does not matter)

in the replica set, and the rest of the nodes are discovered automatically. When the primary

node goes down, the driver talks to the new primary elected by the replica set. The application

does not have to manage any of the communication failures or node selection criteria. Using

replica sets gives you the ability to have a highly available document data store.

Scaling

Scaling in MongoDB is a critical process that ensures a database can handle increasing data

volumes, user traffic and processing demands. As applications grow, maintaining optimal

performance and resource utilization becomes essential.

The need for scaling in MongoDB arises due to below factors:

• Increased Data Volume: As the amount of data stored in a MongoDB database grows

the performance of queries and operations can be affected. Scaling allows to

distribution of this data across various servers or nodes and prevents poor performance.

DEPT OF AIML, JNNCE 45

NOSQL -STUDY MATERIAL

• Rising User Traffic: Growing applications often experience a lot of users and

increased concurrent requests. Scaling ensures the database can handle a large number

of read and write operations and also maintains responsiveness and user experience.

• Diverse Workloads: Applications may implement various methods to support new

features or functionalities which lead to diverse workloads. Scaling allows

organizations to adapt to changing demands by optimizing the database system for

different types of queries and operations.

• Improved Fault Tolerance: Horizontal scaling in MongoDB is achieved through

sharding and enhances fault tolerance. By distributing data across multiple servers

(shards), the system can continue to operate even if one server fails. It

ensures high availability and reliability.

• Cost-Efficiency: Horizontal scaling, which involves adding more hardware as needed

and offers a cost-effective approach to handling increased workloads. Organizations

can scale incrementally based on demand, optimizing infrastructure costs.

Working

Scaling for heavy read-applications:

 Scaling for heavy-read loads can be achieved by adding more read slaves, be directed to the

slaves. Given a heavy-read application, with our 3-node replica-set cluster, we can add more

read capacity to the cluster as the read load increases just by adding more slave nodes to the

replica set to execute reads.

Scaling for write-only applications:

When a new node is added, it will sync up with the existing nodes, join the replica set as

secondary node, and start serving read requests. An advantage of this setup is that we do not

have to restart any other nodes, and there is no downtime for the application either.

DEPT OF AIML, JNNCE 46

NOSQL -STUDY MATERIAL

The shard key plays an important role. You may want to place your MongoDB database shards

closer to their users, so sharding based on user location may be a good idea. When sharding by

customer location, all user data for the East Coast of the USA is in the shards that are served

from the East Coast, and all user data for the West Coast is in the shards that are on the West

Coast.

Suitable use cases

 Event logging- MongoDB can be effectively used for event logging by leveraging its

flexible schema, scalability, and real-time capabilities. Events can be logged directly

into MongoDB collections, taking advantage of features like capped collections to

manage fixed-size log data efficiently. The database's ability to handle high write loads

and its powerful querying capabilities make it suitable for storing and retrieving log

events quickly. Additionally, MongoDB can be integrated with log management and

analysis tools like the ELK stack or Graylog to enhance log aggregation, search, and

visualization, providing a robust solution for real-time event monitoring, debugging,

and analysis

 Content Management Systems, Blogging Platforms- MongoDB is an excellent

choice for building content management systems (CMS) and blogging platforms due to

its flexible schema, scalability, and ease of handling diverse data types. Its document-

oriented structure allows for dynamic content storage, enabling the easy management

of various content types like blog posts, comments, and user profiles. MongoDB's

scalability ensures that the CMS or blogging platform can handle growing traffic and

content volume seamlessly. Additionally, its powerful querying and indexing

capabilities facilitate fast retrieval of content, making it suitable for real-time content

updates and interactive user experiences. Integration with modern web frameworks and

APIs further enhances MongoDB's utility in developing robust and efficient CMS and

blogging platforms.

 Web Analytics or Real-Time Analytics - MongoDB is well-suited for web analytics

and real-time analytics applications due to its high write throughput, flexible schema

design, and powerful aggregation framework. Its ability to ingest and store large

volumes of unstructured and semi-structured data quickly makes it ideal for capturing

web activity logs, user interactions, and other analytical data points. MongoDB's real-

time capabilities allow for immediate processing and analysis of incoming data,

DEPT OF AIML, JNNCE 47

NOSQL -STUDY MATERIAL

providing timely insights and enabling dynamic dashboards and reports. The database's

scalability ensures that it can handle the growing data needs of analytics platforms,

while its integration with tools like Apache Kafka and Spark enhances its ability to

support complex data processing and analysis pipelines, making it a robust choice for

real-time and web analytics solutions.

 E-Commerce Applications - MongoDB is highly effective for e-commerce

applications due to its flexible schema, which allows for dynamic and diverse product

catalogs that can easily evolve with business needs. Its ability to handle large volumes

of transactions with high availability and horizontal scalability ensures that the

application can support growing user bases and increased traffic during peak times,

such as sales events. MongoDB's powerful indexing and aggregation capabilities enable

fast and efficient querying, crucial for providing real-time inventory updates,

personalized recommendations, and advanced search features. Additionally, its

document-oriented data model aligns well with the complex data structures inherent in

e-commerce, such as customer profiles, order histories, and shopping carts, making

MongoDB a robust and versatile choice for modern e-commerce platforms.

When not to use (Limitations)
 Complex Transactions Spanning Different Operations -MongoDB is not well-suited

for complex transactions that span multiple operations across different collections or

documents due to its limited support for multi-document ACID transactions. While

MongoDB does offer support for multi-document transactions, it is not as robust as

traditional relational databases when dealing with complex transactional workflows

that require strict consistency and rollbacks across various entities. This limitation can

pose challenges in scenarios requiring intricate financial transactions, inventory

management, or other critical operations that demand guaranteed atomicity,

consistency, isolation, and durability (ACID) across numerous operations. For such use

cases, a relational database might be a more appropriate choice.

 Queries against Varying Aggregate Structure- MongoDB may not be the best choice

for scenarios requiring complex queries against varying aggregate structures due to its

document-oriented nature. While MongoDB supports aggregation through its powerful

aggregation framework, the flexibility of its schema can lead to inconsistent data

structures across documents, making it challenging to perform efficient queries or joins

on heterogeneous data. In cases where the data structure varies significantly between

records or requires frequent schema changes, querying and aggregating data can

become inefficient and complex. Relational databases or specialized analytics

platforms may be more suitable for handling complex queries against data with varying

aggregate structures, as they provide a more rigid and standardized schema for

optimized querying and aggregation.

DEPT OF AIML, JNNCE 48

NOSQL -STUDY MATERIAL

Module-5

Graph Databases

Overview
Graph databases are specialized NoSQL databases that store data in the form of graphs,

consisting of nodes (entities) and edges (relationships). They are designed to efficiently handle

highly interconnected data, making them ideal for use cases where relationships between

entities are central, such as social networks, recommendation systems, and fraud detection.

Unlike traditional relational databases, graph databases explicitly define relationships,

allowing for fast traversal and querying of complex, dynamic networks. Their flexible schema

and ability to perform real-time queries on interconnected data make them a powerful tool for

applications that require deep relationship analysis and pattern recognition. Popular graph

databases include Neo4j, Amazon Neptune, and ArangoDB.

Terminologies of Graph databases

Graph databases use specific terminologies to represent and manage data. Here’s an overview

of key terms with examples:

1. Node: Represents an entity or object in the graph. Each node can have properties that

store information about the entity.

o Example: In a social network, a node might represent a Person, with properties

like name, age, and location.

2. Edge (Relationship): Represents a connection or relationship between two nodes. Each

edge has a direction and can also have properties.

o Example: In the social network, an edge could represent a Friendship between

two Person nodes, with properties like since (the date the friendship started).

3. Property: Data attached to nodes or edges that provide additional details about them.

o Example: A Person node could have properties like name = "Alice", age = 30,

while an edge between Alice and Bob could have a property since = "2015".

4. Graph: The entire collection of nodes, edges, and their relationships that form a

connected structure.

o Example: The entire social network graph includes all users (nodes) and their

relationships (edges), such as friendships, followers, or likes.

5. Degree: The number of edges connected to a node. It can be categorized as in-degree

(edges pointing to the node) and out-degree (edges pointing away from the node).

o Example: If Alice is friends with Bob, Carol, and Dave, the degree of Alice is

3 (three friendships).

6. Traversal: The process of exploring the graph by following edges from one node to

another. Traversals are used to find paths, patterns, or connections in the graph.

o Example: A query to find all friends of Alice and their friends (i.e., second-

degree connections) would be a traversal of Alice’s friends, followed by

traversing their friends.

7. Path: A sequence of nodes connected by edges. It represents a route from one node to

another.

o Example: A path could be Alice → Bob → Carol, where each arrow represents

an edge or relationship.

8. Subgraph: A subset of a graph that includes a subset of nodes and edges. It represents

a portion of the overall graph, often used for analysis or exploration.

DEPT OF AIML, JNNCE 49

NOSQL -STUDY MATERIAL

o Example: A subgraph could represent a group of friends (nodes) and their

mutual relationships (edges) within a social network.

Example structure

Once we have a graph of these nodes and edges created, we can query the graph in many ways,

such as “get all nodes employed by Big Co that like NoSQL Distilled.” A query on the graph

is also known as traversing the graph. An advantage of the graph databases is that we can

change the traversing requirements without having to change the nodes or edges. If we want to

“get all nodes that like NoSQL Distilled,” we can do so without having to change the existing

data or the model of the database, because we can traverse the graph any way we like.

Features
Graph databases offer several key features that make them highly effective for handling

complex, interconnected data. Some of the main features include:

1. Efficient Relationship Handling: Graph databases are designed to handle

relationships between data points as first-class citizens, allowing for fast and efficient

querying of complex relationships, even when they involve multiple hops between

nodes.

2. Flexible Schema: Unlike relational databases, graph databases have a flexible schema

that allows nodes and edges to have varying structures, making them ideal for handling

dynamic and evolving data with changing relationships.

3. Real-Time Querying: Graph databases support real-time traversal and querying of

data, enabling quick insights into interconnected data. This is particularly beneficial for

use cases like social networks, fraud detection, and recommendation systems where

real-time performance is crucial.

DEPT OF AIML, JNNCE 50

NOSQL -STUDY MATERIAL

4. ACID Transactions: Many graph databases support ACID (Atomicity, Consistency,

Isolation, Durability) transactions, ensuring that operations on the graph are safe,

reliable, and consistent.

5. Graph Algorithms: Graph databases come with built-in support for graph algorithms

like shortest path, centrality, community detection, and PageRank, which are useful for

analyzing relationships and patterns in the data.

6. Intuitive Representation: Graphs provide an intuitive way to model data that is

naturally interconnected, such as social networks, supply chains, or recommendation

engines, as it closely mirrors real-world relationships.

7. Scalability: Graph databases are designed to scale horizontally, meaning they can

efficiently handle large volumes of interconnected data by distributing the data across

multiple servers or nodes.

8. Optimized for Traversal: Graph databases are optimized for traversing nodes and

edges, making them ideal for applications that need to explore or analyze complex

relationships between data points.

9. Deep and Complex Queries: Graph databases allow for deep and complex queries that

would be difficult to perform efficiently in relational databases, such as querying for

multiple levels of connections, discovering hidden patterns, and exploring hierarchical

structures.

10. Built-in Indexing: Graph databases automatically index nodes and edges based on their

relationships, which improves the performance of querying and traversing large graphs.

These features make graph databases particularly suitable for applications in areas like social

networks, fraud detection, recommendation systems, knowledge graphs, and network analysis,

where relationships between entities are essential.

CRUD operations on NEO4J
Neo4j is a popular graph database that uses Cypher, a declarative query language, to perform

CRUD (Create, Read, Update, Delete) operations on graph data. Here's an example of how to

perform each of these operations in Neo4j using Cypher:

1. Create (C) - Adding nodes and relationships

To create nodes and relationships in Neo4j, you use the CREATE keyword.

Example: Create a Person node and a Movie node with a LIKES relationship between them.

CREATE (a:Person {name: 'Alice', age: 30}),

 (m:Movie {title: 'The Matrix', release_year: 1999}),

 (a)-[:LIKES]->(m);

This query creates:

• A Person node for Alice with properties name and age.

• A Movie node for "The Matrix" with properties title and release_year.

• A relationship LIKES from Alice to "The Matrix".

2. Read (R) - Retrieving nodes and relationships

To retrieve data, you use the MATCH keyword to specify the pattern you are looking for.

Example: Find all movies liked by Alice.

MATCH (a:Person {name: 'Alice'})-[:LIKES]->(m:Movie)

RETURN m.title, m.release_year;

DEPT OF AIML, JNNCE 51

NOSQL -STUDY MATERIAL

This query finds the Movie nodes that are connected to the Person node representing Alice via

a LIKES relationship and returns the titles and release years of those movies.

3. Update (U) - Modifying existing nodes and relationships

To update properties, use the SET keyword.

Example: Update Alice's age and add a new property to the LIKES relationship.

MATCH (a:Person {name: 'Alice'}), (m:Movie {title: 'The Matrix'})

SET a.age = 31,

 m.genre = 'Sci-Fi',

 (a)-[:LIKES]->(m).since = 2024;

This query updates:

• Alice's age to 31.

• Adds a genre property to the Movie node for "The Matrix".

• Adds a since property to the LIKES relationship indicating the year Alice liked the

movie.

4. Delete (D) - Removing nodes and relationships

To delete nodes or relationships, use the DELETE keyword.

Example: Delete the relationship between Alice and "The Matrix".

MATCH (a:Person {name: 'Alice'})-[r:LIKES]->(m:Movie {title: 'The Matrix'})

DELETE r;

This query deletes the LIKES relationship between Alice and "The Matrix" while leaving the

nodes intact.

Example: Delete a node (person) and ensure that related relationships are also deleted.

MATCH (a:Person {name: 'Alice'})

DETACH DELETE a;

This query deletes the Person node for Alice and also deletes any relationships connected to

her.

Scaling in Graph databases
Application-level sharding in graph databases involves partitioning the data across multiple

databases or nodes to achieve horizontal scalability. This is especially important for large-scale

graph applications, where a single server may not be sufficient to handle the growing data or

query demands. Sharding in graph databases differs from traditional relational databases

because the relationships between data points (nodes and edges) play a critical role in

determining how data is distributed. Here's how application-level sharding can be achieved for

graph databases:

1. Sharding Strategy

The first step in application-level sharding is deciding on a strategy to partition the graph data.

There are a few common approaches to this:

DEPT OF AIML, JNNCE 52

NOSQL -STUDY MATERIAL

• Entity-based Sharding: The graph is divided by types of entities (e.g., Person, Movie,

Product). Each entity type or group of related entities is stored on different nodes or

databases.

o Example: All Person nodes might be stored on one database or server, and all

Movie nodes on another. Relationships like LIKES could then be stored across

these databases, requiring queries to traverse between them.

• Range-based Sharding: Data is partitioned based on specific ranges of values for node

properties (e.g., partitioning users by age, geographic location, or any other suitable

property). This is often more suitable for applications that can divide the graph based

on identifiable segments.

o Example: You might shard users in a social network by the first letter of their

name or by their geographical region.

• Graph Component Sharding: The graph is split based on connected components, where

each subgraph (which could be a community or cluster) is stored on a different shard.

This is particularly useful when the graph has distinct groups that don't share many

relationships across groups.

o Example: In a social network, one shard could contain all the users in a

particular community or group of users that interact frequently, while another

shard holds different groups.

2. Handling Relationships Between Shards

One of the challenges with graph sharding is how to manage relationships (edges) that span

multiple shards. To maintain performance, strategies need to be implemented to minimize

cross-shard traversal:

• Cross-shard Traversal: When relationships span multiple shards, the system must be

able to efficiently locate the related data. This can be done using techniques like storing

references or mappings between shards and routing queries to the appropriate shard.

o Example: If a query needs to traverse from a Person node on one shard to a

Movie node on another, the application can use metadata about shard locations

to fetch the relevant data.

• Query Routing and Aggregation: The application layer needs to be responsible for

query routing, ensuring that queries are sent to the appropriate shards based on the data

being requested. Additionally, results from multiple shards may need to be aggregated

to provide a unified response.

o Example: A recommendation system may need to gather data from multiple

shards to suggest friends based on mutual connections across different graph

partitions.

3. Replication for Availability and Fault Tolerance

To ensure high availability, graph databases can use replication. In a sharded setup, each shard

can have multiple replicas distributed across different servers, ensuring that if one server fails,

the data can still be accessed from another replica.

• Replica Sets: Similar to MongoDB’s replica sets, graph databases like Neo4j can have

replication mechanisms to provide fault tolerance and ensure that data is available even

if one server or shard fails.

4. Consistency Models

In a distributed graph database setup, maintaining consistency across shards can be tricky,

especially for graph-based operations that require ACID properties. Depending on the

application’s needs, different consistency models can be used:

DEPT OF AIML, JNNCE 53

NOSQL -STUDY MATERIAL

• Eventual Consistency: In scenarios where strict consistency isn’t required for all

operations, eventual consistency can be used, allowing for faster writes and lower

overhead in managing consistency across distributed nodes.

• Strong Consistency: For applications that require strong consistency (e.g., financial

transactions or other critical operations), distributed transactions across shards must be

managed, ensuring data integrity and consistency.

5. Sharding in Graph Database Solutions

• Neo4j: Neo4j supports a form of sharding through its clustering features, allowing for

horizontal scaling by replicating graph data across different nodes. However, its

sharding capabilities are limited in terms of true application-level sharding and require

manual configuration to distribute data across nodes.

• Amazon Neptune: Amazon Neptune, a managed graph database service, allows scaling

through replication and partitioning. It automatically distributes data across multiple

nodes and shards, enabling high availability and performance in large-scale graph

applications.

Use cases of Graph databases

 Connected data - A use case of graph databases with connected data is in social

network analysis, where users (nodes) are connected by relationships (edges) like

friendships, followers, or group memberships. Graph databases are ideal for efficiently

querying these connections, enabling features such as friend recommendations,

community detection, and real-time suggestions based on mutual relationships. By

leveraging graph traversal capabilities, social platforms can quickly find connections

like "friends of friends" or suggest new content based on similar interests. The flexible

schema of graph databases also allows for dynamic additions of new relationship types,

making them well-suited for modeling and querying complex, interconnected data in

social networks.

 Routing, Dispatch, and Location-Based Services - A use case of graph databases in

routing, dispatch, and location-based services is in logistics and transportation

management, where real-time route optimization and dispatching rely heavily on

efficiently mapping and traversing networks of locations (nodes) and roads or routes

(edges). In such systems, graph databases model roads, intersections, and routes as a

network of nodes and edges, making it easy to calculate the shortest paths, optimal

routes, or dispatch orders based on real-time conditions. For instance, a delivery service

can use a graph database to dynamically calculate the best route for drivers, taking into

account traffic, road closures, or time constraints. Similarly, location-based services

like ride-sharing apps use graph databases to find the fastest paths for users and drivers,

considering factors such as proximity, traffic, and available vehicles. The ability to

perform complex, real-time traversal queries on this interconnected data allows for

efficient routing, dispatching, and location-based recommendations, which is crucial

for optimizing operations in logistics, transportation, and ride-sharing industries.

 Recommendation Engines - A use case of graph databases in recommendation engines

is in e-commerce platforms where personalized product recommendations are crucial.

Graph databases excel in this scenario by modeling the relationships between users,

products, and their interactions (e.g., views, purchases, ratings) as a network of nodes

and edges. For instance, users are represented as nodes, products as other nodes, and

the interactions (such as "purchased," "viewed," or "liked") are edges connecting them.

DEPT OF AIML, JNNCE 54

NOSQL -STUDY MATERIAL

By traversing this graph, the system can identify patterns like "users who bought this

product also bought" or "products similar to those the user has liked." Graph databases

allow for real-time, highly personalized recommendations based on the user’s past

behavior and the behaviors of similar users or products. This is particularly effective in

uncovering hidden relationships and offering more relevant, context-aware suggestions,

making them ideal for industries such as e-commerce, media streaming, and online

content platforms.

When not to use (Limitations)

In some situations, graph databases may not appropriate. When you want to update all or a

subset of entities—for example, in an analytics solution where all entities may need to be

updated with a changed property—graph databases may not be optimal since changing a

property on all the nodes is not a straightforward operation. Even if the data model works for

the problem domain, some databases may be unable to handle lots of data, especially in global

graph operations (those involving the whole graph)

