

Principles of Artificial Intelligence

 Prepared by
Dr. Chetan K R

Professor and Head
Dept. of AIML

JNNCE

 DEPT. OF AIML PAGE 2

MODULE-1

Overview of Artificial Intelligence:

 Artificial Intelligence is concerned with the design of intelligence in an
artificial device. The term was coined by John McCarthy in 1956.

 Intelligence is the ability to acquire, understand and apply the knowledge to
achieve goals in the world.

 AI is the study of the mental faculties through the use of computational
models

 AI is the study of intellectual/mental processes as computational processes.
 AI program will demonstrate a high level of intelligence to a degree that

equals or exceeds the intelligence required of a human in performing some
task.

 AI is unique, sharing borders with Mathematics, Computer Science,
Philosophy, Psychology, Biology, Cognitive Science and many others.

 Although there is no clear definition of AI or even Intelligence, it can be
described as an attempt to build machines that like humans can think and
act, able to learn and use knowledge to solve problems on their own.

Definitions of AI
 Thinking humanly-Machine with minds. It is an effort to make computers

think. It involves automation of human activities such as decision making,
problem solving and learning

 Thinking rationally- Machine with models. It is The study of the
computations that make it possible to perceive, reason, and act.

 Acting humanly -Create machines working as people. The study of how to
make computers do things at which, at the moment, people are better

 Acting rationally - Computational Intelligence is the study of the design of
intelligent agents.

Acting humanly:
 A machine passes Turing Test if human interrogator cannot differentiate

whether responses came from human or machine. To pass Turing test, machine
requires:

 Natutal Langauge processing: To enable it to communicate successfully in
English; Knowledge representation to store what it knows or hears;

 Automated reasoning to use the stored information to answer questions and to
draw new conclusions;

 machine learning to adapt to new circumstances and to detect and extrapolate
pattern

 Total Turing Test

In the Total Turing Test, verbal behaviors are not the sole standard for
intelligence: other behaviors are examined too. “‘The candidate must be able to
do, in the real world of objects and people, everything that real people can do”.
Total Turing Test can only be applied to a robot, or some other agent that is

 DEPT. OF AIML PAGE 3

situated and embodied in the physical world. To pass the total Turing Test, the
computer will need:

 computer vision to perceive objects, and
 robotics to manipulate objects and move about

Thinking humanly-Cognitive modeling approach:
Thinking humanly is to make a system or program to think like a human. But to
achieve that, we need to know how does a human thinks. Suppose if we ask a person
to explain how his brain connects different things during the thinking process, he/she
will probably close both eyes and will start to check how he/she thinks but he/she
cannot explain or interpret the process.

For example – If we want to model the thinking of Roger Federer and make the
model system to compete with someone or against him to play in a tennis game, it may
not be possible to replicate the exact thinking as Roger Federer, however, a good build
of Intelligence systems (Robot) can play and win the game against him.
To understand the exact process of how we think, we need to go inside the human
mind to see how this giant machine works. We can interpret how the human mind
thinks in theory, in three ways as follows:

1. Introspection method – Catch our thoughts and see how it flows.
2. Psychological Inspections method – Observe a person on the action.
3. Brain Imaging method (MRI (Magnetic resonance imaging) or fMRI

(Functional Magnetic resonance imaging) scanning) – Observe a person’s
brain in action.

Thinking rationally-Laws of thought approach:
Aristotle’s syllogisms provided patterns for argument structures that always provide
correct premises.A famous example, “Socrates is a man; all men are mortal; therefore,
Socrates is mortal”. Another example – All TVs use energy; Energy always generates
heat; therefore, all TVs generate heat”.

These arguments initiated the field called logic. Notations for statements for all
kinds of objects were developed and interrelated between them to show logic. By 1965,
programs existed that could solve problems that were described in logical notation and
provides a solution.
There are two limitations to this approach:

1. First, it is not easy to take informal knowledge to use logical notation when
there is not enough certainty on the knowledge.

2. Solving in principle and solving in practice varies hugely.

Acting rationally-Rational Agent approach:
A traditional computer program blindly executes the code that we write.

Neither it acts on its own nor it adapts to change itself based on the outcome. The so-
called agent program that we refer to here is expected to do more than the traditional
computer program. It is expected to create and pursue the goal, change state, and
operate autonomously.

A rational agent is an agent that acts to achieve its best performance for a given
task. The “Logical Approach” to AI emphasizes correct inferences and achieving a
correct inference is a part of the rational agent. Being able to give a logical reason is
one way of acting rationally. But all correct inferences cannot be called rationality,
because there are situations that don’t always have a correct thing to do. It is also

 DEPT. OF AIML PAGE 4

possible to act rationally without involving inferences. Our reflex actions are
considered as best examples of acting rationally without inferences.
The rational agent approach to AI has a couple of advantage over other approaches:

1. A correct inference is considered a possible way to achieve rationality but is not
always required to achieve rationality.

2. It is a more manageable scientific approach to define rationality than others
that are based on human behavior or human thought.

Foundations of Artificial Intelligence:

Philosophy

 Idealism is the belief that the mind and ideas is the primary structure of reality
and that physical or material reality is secondary.

 Materialism is the opposite of Idealism and sees matter as the primary reality
and all other things including thoughts as the product of interactions of matter.

 Rationalism is the belief that the rational mind is the best way to know
something. If you are a rationalist you believe that your mind is more
trustworthy than your sense. A stick in the water might look bent, but you know
rationally that it only looks that way because it is in the water.

 Empiricism is the opposite of rationalism and it is the belief that the senses are
the best way to know something. You might think something is true, but you
only know it is true if your senses confirm it.

 The principle of induction, as applied to causation, says that, if A has been
found very often accompanied or followed by B, then it is probable that on the
next occasion on which A is observed, it will be accompanied or followed by B.

 Logical positivism is a combination of the two approaches upheld by positivism
and symbolic logic. Positivism is a particular school of knowledge which
advocates that valid knowledge must be based on sense knowledge. Any
knowledge which is not based on senses is meaningless. It could be noted here
that positivism is the extreme form of empiricism as the empiricists do not
claim that knowledge not based on senses is invalid or meaningless, though
they too advocate that knowledge should begin with sense experience

Mathematics

 Philosophers staked out some of the fundamental ideas of AI, but the leap to a
formal science required a level of mathematical formalization in three
fundamental areas: logic, computation, and probability

 In mathematics and computer science, an algorithm is a finite sequence of
rigorous instructions, typically used to solve a class of specific problems or to
perform a computation. Algorithms are used as specifications for performing
calculations and data processing

 Incompleteness theorem states that in any reasonable mathematical system
there will always be true statements that cannot be proved.

 Computable functions are the formalized analogue of the intuitive notion of
algorithms, in the sense that a function is computable if there exists an
algorithm that can do the job of the function, i.e. given an input of the function
domain it can return the corresponding output.

 Tractable problems can be solved by computer algorithms that run in

http://en.wikipedia.org/wiki/Materialism#European_Enlightenment
http://en.wikipedia.org/wiki/Ren%C3%A9_Descartes
http://en.wikipedia.org/wiki/David_Hume

 DEPT. OF AIML PAGE 5

polynomial time; i.e., for a problem of size n, the time or number of steps
needed to find the solution is a polynomial function of n. Algorithms for solving
hard, or intractable, problems, on… In P versus NP problem.

Economics

 In economics, utility is a term used to determine the worth or value of a good
or service. More specifically, utility is the total satisfaction or benefit derived
from consuming a good or service. Economic theories based on rational choice
usually assume that consumers will strive to maximize their utility.

 Both decision and game theory concern the reasoning process underlying
people’s choices, that is, how their desires, beliefs, and other attitudes combine
in a way that make people choose one option over another.

 Whereas decision theory is concerned with an individual decision-maker who
tries to make the best decision based on their understanding of the world, game
theory is concerned with the interaction between different decision-makers
each of whom is trying to make the best decision based on their beliefs about
what others will choose.

 A Markov decision process (MDP) refers to a stochastic decision-making
process that uses a mathematical framework to model the decision-making of a
dynamic system. It is used in scenarios where the results are either random or
controlled by a decision maker, which makes sequential decisions over time.

 Satisficing is a decision-making strategy that aims for a satisfactory or adequate
result, rather than the optimal solution. Instead of putting maximum exertion
toward attaining the ideal outcome, satisficing focuses on pragmatic effort
when confronted with tasks.

Neuroscience

Neuroscience is the study of the nervous system – from structure to function,
development to degeneration, in health and in disease. It covers the whole nervous
system, with a primary focus on the brain. Incredibly complex, our brains define who
we are and what we do. They store our memories and allow us to learn from them. Our
brain cells and their circuits create new thoughts, ideas and movements and reinforce
old ones. Their individual connections (synapses) are responsible for a baby’s first
steps and every record-breaking athletic performance, with each thought and
movement requiring exquisitely precise timing and connections.

https://www.investopedia.com/ask/answers/042015/what-are-different-ways-utility-measured-economics.asp
https://www.investopedia.com/ask/answers/042015/what-are-different-ways-utility-measured-economics.asp

 DEPT. OF AIML PAGE 6

Neurons (also called neurones or nerve cells) are the fundamental units of the

brain and nervous system, the cells responsible for receiving sensory input from the
external world, for sending motor commands to our muscles, and for transforming
and relaying the electrical signals at every step in between. More than that, their
interactions define who we are as people. A neuron has three main parts: dendrites,
an axon, and a cell body or soma (see image below), which can be represented as the
branches, roots and trunk of a tree, respectively. A dendrite (tree branch) is where a
neuron receives input from other cells. Dendrites branch as they move towards their
tips, just like tree branches do, and they even have leaf-like structures on them
called spines.

A crude comparison of the raw computational resources available to the IBM
BLUE GENE supercomputer, a typical personal computer of 2008, and the human
brain.

https://qbi.uq.edu.au/brain/brain-anatomy/axons-cable-transmission-neurons

 DEPT. OF AIML PAGE 7

Psychology

 Psychology is the scientific study of the mind and behavior. Psychologists are
actively involved in studying and understanding mental processes, brain
functions, and behavior. The field of psychology is considered a "Hub Science"
with strong connections to the medical sciences, social sciences, and education

 Cognitive psychology is the branch of psychology dedicated to studying how
people think. The cognitive perspective in psychology focuses on how the
interactions of thinking, emotion, creativity, and problem-solving abilities
affect how and why you think the way you do. Cognitive psychology attempts to
measure different types of intelligence, determine how you organize your
thoughts, and compare different components of cognition.

 three key steps of a knowledge-based agent: (1) the stimulus must be translated
into an internal representation, (2) the representation is manipulated by
cognitive processes to derive new internal representations, and (3) these are in
turn retranslated back into action

Computer Engineering

 Computer engineering is defined as the discipline that embodies the science
and technology of design, construction, implementation, and maintenance of
software and hardware components of modern computing systems and
computer-controlled equipment.

 Computer engineering has traditionally been viewed as a combination of both
computer science (CS) and electrical engineering (EE).

 It has evolved over the past three decades as a separate, although intimately
related, discipline.

 Computer engineering is solidly grounded in the theories and principles of
computing, mathematics, science, and engineering and it applies these theories
and principles to solve technical problems through the design of computing
hardware, software, networks, and processes.

 Increasingly, computer engineers are involved in the design of computer-based
systems to address highly specialized and specific application needs.

 Computer engineers work in most industries, including the computer,
aerospace, telecommunications, power production, manufacturing, defense,
and electronics industries.

Control Theory and Cybernetics

 Control theory (Goodwin et al., 2001) deals with influencing the behavior
of dynamical systems. Although a major application of control theory involves
control system engineering, which deals with the design of process control
systems for industry, other applications range far beyond this. This section
presents the basic principles for modeling a dependable system as a control
system.

 Cybernetics (Wiener, 1948), control theory, is a transdisciplinary branch of
engineering and computational mathematics. It deals with the behavior of
dynamical systems with inputs and how their behavior is modified by feedback.

 The objective of control theory is to control a system so that the system's output
follows a desired control signal, called the reference. To do this, a (normally

https://www.webmd.com/a-to-z-guides/what-is-psychologist
https://www.sciencedirect.com/topics/computer-science/dynamical-system
https://www.sciencedirect.com/topics/computer-science/dependable-system
https://www.sciencedirect.com/topics/computer-science/computational-mathematics

 DEPT. OF AIML PAGE 8

feedback) controller is designed that determines what output needs to be
monitored, how to compare it with the reference, which system behaviors need
to be adjusted, and how to adjust them. The difference between actual and
desired output, called the error signal, is applied as feedback to the system
input, to bring the actual output closer to the reference.

Linguistics

 Linguistics is the scientific study of language, and its focus is the systematic
investigation of the properties of particular languages as well as the
characteristics of language in general.

 It encompasses not only the study of sound, grammar and meaning, but also
the history of language families, how languages are acquired by children and
adults, and how language use is processed in the mind and how it is connected
to race and gender.

 With close connections to the humanities, social sciences and the natural
sciences, linguistics complements a diverse range of other disciplines such as
anthropology, philosophy, psychology, sociology, biology, computer science,
health sciences, education and literature.

 The subfield of Applied Linguistics emphasizes the use of linguistic concepts in
the classroom to help students improve their ability to communicate in their
native language or a second language.

HISTORY OF AI

The gestation of artificial intelligence (1943–1955)

 Knowledge of basic psychology, functions of neurons in the brain and
propositional logic

 A neural network is a neural circuit of biological neurons, sometimes also
called a biological neural network, or a network of artificial neurons or nodes in
the case of an artificial neural network.[1]

 Artificial neural networks are used for solving artificial intelligence (AI)
problems; they model connections of biological neurons as weights between
nodes. A positive weight reflects an excitatory connection, while negative values
mean inhibitory connections. All inputs are modified by a weight and summed.

 Neuron on or off based on stimulation by neighboring neurons
 Simple neural network with logical connectives like AND, OR, NOT etc
 Hebbian Learning attempts to connect the psychological and neurological

underpinnings of learning. he basis of the theory is when our brains learn
something new, neurons are activated and connected with other neurons,
forming a neural network. These connections start off weak, but each time the
stimulus is repeated, the connections grow stronger and stronger, and the
action becomes more intuitive.

The birth of artificial intelligence (1956)

 he field of Artificial Intelligence (AI) was officially born and christened at a
workshop organized by John McCarthy in 1956 at the Dartmouth Summer
Research Project on Artificial Intelligence. The goal was to investigate ways in

https://en.wikipedia.org/wiki/Neural_circuit
https://en.wikipedia.org/wiki/Neuron
https://en.wikipedia.org/wiki/Artificial_neuron
https://en.wikipedia.org/wiki/Node_(computer_science)
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Neural_network#cite_note-1
https://en.wikipedia.org/wiki/Artificial_intelligence

 DEPT. OF AIML PAGE 9

which machines could be made to simulate aspects of intelligence.
 Although the Dartmouth workshop created a unified identity for the field and a

dedicated research community, many of the technical ideas that have come to
characterize AI existed much earlier.

 In the eighteenth century, Thomas Bayes provided a framework for reasoning
about the probability of events.

 George Boole showed that logical reasoning—dating back to Aristotle—
could be performed systematically in the same manner as solving a system of
equations.

 Emergence of the field of statistics, which enables inferences to be drawn
rigorously from data.

 The idea of physically engineering a machine to execute sequences of
instructions, which had captured the imagination of pioneers such as Charles
Babbage, had matured by the 1950s, and resulted in the construction of the
first electronic computers.

 Primitive robots, which could sense and act autonomously, had also been built
by that time.

Why AI as a separate branch

❑ AI to duplicate human facilities such as creativity, self-improvement and
language use

❑ Uses computer science methodologies
❑ Design autonomous systems

Early enthusiasm, great expectations (1952–1969)
 A physical symbol system takes physical patterns (symbols), combining them into
structures (expressions) and manipulating them (using processes) to produce new
expressions.
Eg:

❖ Formal logic
❖ Algebra
❖ Chess
❖ Computer program

 DEPT. OF AIML PAGE 10

Lisp, an acronym for list processing, is a functional programming language that
was designed for easy manipulation of data strings. As one of the oldest programming
languages still in use, Lisp offers several different dialects and has influenced the
development of other languages.

A unique feature of early Lisp versions compared to most other programming
languages is that the code could be directly interpreted without a compiler. The source
code itself could be parsed and interpreted directly on a system. Today, however, most
Lisp versions require that code be compiled and then loaded into an image to run. This
offers faster program execution speeds compared to direct interpretation.

To cope with the bewildering complexity of the real world, scientists often ignore less
relevant details; for instance, physicists often ignore friction and elasticity in their
models. In 1970 Marvin Minsky and Seymour Papert of the MIT AI Laboratory
proposed that, likewise, AI research should focus on developing programs capable of
intelligent behaviour in simpler artificial environments known as microworlds. Much
research has focused on the so-called blocks world, which consists of coloured blocks
of various shapes and sizes arrayed on a flat surface.
A dose of reality (1966–1973)

 1960-70s
 Too early for wide applications
 Intractability issues: From a computational complexity stance, intractable

problems are problems for which there exist no efficient algorithms to solve
them. Most intractable problems have an algorithm – the same algorithm – that
provides a solution, and that algorithm is the brute-force search.

 The genetic algorithm is a method for solving both constrained and
unconstrained optimization problems that is based on natural selection, the
process that drives biological evolution. The genetic algorithm repeatedly
modifies a population of individual solutions. Genetic algorithms also faced
intractability

 When training a neural network, there’s going to be some data that the neural
network trains on, and there’s going to be some data reserved for checking the
performance of the neural network. If the neural network performs well on the
data which it has not trained on, we can say it has generalized well on the
given data. Generalization of neural networks did not work

Knowledge-based systems: The key to power? (1969–1979)

 DENDRAL, an early expert system, developed beginning in 1965 by the artificial
intelligence (AI) researcher Edward Feigenbaum and the geneticist Joshua
Lederberg, both of Stanford University in California. Heuristic DENDRAL (later
shortened to DENDRAL) was a chemical-analysis expert system.

 The substance to be analyzed might, for example, be a

complicated compound of carbon, hydrogen, and nitrogen. Starting from
spectrographic data obtained from the substance, DENDRAL would hypothesize the
substance’s molecular structure.

 DENDRAL’s performance rivaled that of chemists expert at this task, and the program was
used in industry and in academia.

 An expert system is a computer program that is designed to solve complex
problems and to provide decision-making ability like a human expert. It performs
this by extracting knowledge from its knowledge base using the reasoning and
inference rules according to the user queries.

https://www.britannica.com/science/friction
https://www.britannica.com/science/elasticity-physics
https://www.britannica.com/biography/Marvin-Lee-Minsky
https://www.britannica.com/biography/Seymour-Papert
https://www.merriam-webster.com/dictionary/environments
https://www.britannica.com/technology/expert-system
https://www.britannica.com/technology/artificial-intelligence
https://www.britannica.com/technology/artificial-intelligence
https://www.britannica.com/biography/Edward-Albert-Feigenbaum
https://www.britannica.com/biography/Joshua-Lederberg
https://www.britannica.com/biography/Joshua-Lederberg
https://www.britannica.com/topic/Stanford-University
https://www.merriam-webster.com/dictionary/Heuristic
https://www.merriam-webster.com/dictionary/compound
https://www.britannica.com/science/carbon-chemical-element
https://www.britannica.com/science/hydrogen
https://www.britannica.com/science/nitrogen
https://www.merriam-webster.com/dictionary/academia

 DEPT. OF AIML PAGE 11

 The expert system is a part of AI, and the first ES was developed in the year 1970,
which was the first successful approach of artificial intelligence. It solves the most
complex issue as an expert by extracting the knowledge stored in its knowledge
base. The system helps in decision making for compsex problems using both facts
and heuristics like a human expert.

 It is called so because it contains the expert knowledge of a specific domain and
can solve any complex problem of that particular domain. These systems are
designed for a specific domain, such as medicine, science, etc.

 MYCIN was an early backward chaining expert system that used AI to identify
microorganisms causing severe diseases like bacteremia and meningitis and
propose antibiotics based on patient weight.

AI becomes an industry (1980–present)
 It has taken more than 25 years to gain recognition from the industry. Xcon was

the very first industrial application of AI. Xcon is an expert system that
configures mini-computers to meet user requirements. That process was
normally taken 8 hours but xcon did it within 8 minutes.

 The neural network was reborn with a backpropagation training algorithm. In
the late 1980s AI-based weapons were demonstrated. The best example of that
is the DART expert system which is used in the gulf war.

AI adopts the scientific method (1987–present)

 The field of speech recognition illustrates the pattern. In recent years,
approaches based on hidden Markov models (HMMs) have come to dominate
the area. Two aspects of HMMs are relevant. First, they are based on a rigorous
mathematical theory. Second, they are generated by a process of training on a
large corpus of real speech data. This ensures that the performance is robust,
and in rigorous blind tests the HMMs have been improving their scores steadily.

 Speech technology and the related field of handwritten character recognition
are already making the transition to widespread industrial and consumer
applications.

 Machine translation follows the same course as speech recognition. Much of the
work on neural nets in the 1980s was done in an attempt to scope out what
could be done and to learn how neural nets differ from “traditional” techniques.
Using improved methodology and theoretical frameworks, the field arrived at
an understanding in which neural nets can now be compared with
corresponding techniques from statistics, pattern recognition, and machine
learning, and the most promising technique can be applied to each application.

 Probabilistic Reasoning in Intelligent Systems led to a new acceptance of
probability and decision theory in AI. The Bayesian network formalism was
invented to allow efficient representation of, and rigorous reasoning with,
uncertain knowledge.

 Similar gentle revolutions have occurred in robotics, computer vision, and
knowledge representation. A better understanding of the problems and their
complexity properties, combined with increased mathematical sophistication,
has led to workable research agendas and robust methods.

 DEPT. OF AIML PAGE 12

Agents and Environments
An agent is anything that can be viewed as perceiving its environment through

sensors and SENSOR acting upon that environment through actuators. A human
agent has eyes, ears, and other organs for sensors and hands, legs, vocal tract, and so
on for actuators. A robotic agent might have cameras and infrared range finders for
sensors and various motors for actuators. A software agent receives keystrokes, file
contents, and network packets as sensory inputs and acts on the environment by
displaying on the screen. Percept refers to the agent’s perceptual inputs at any given
instant. An agent’s percept sequence is the complete history of everything the agent
has ever perceived.

Agent function maps any given percept sequence to action. Agent program

implements agent function in a physical system.

Eg: Vacuum cleaner for 2 locations

 DEPT. OF AIML PAGE 13

Rational Agents
A rational agent is a computer program that uses logical reasoning and the ability to
make decisions to determine its following action. An excellent example of a rational
agent is a chess player. A chess player can analyze the board and determine which
moves will result in the most advantageous outcome for itself. It can move one piece
over another, move its king out of danger, or attack an opponent's piece.
A rational agent has four primary characteristics:

• Perception: The ability to perceive the current state of the environment and
gather relevant information.

• Actuators: The ability to take actions within the environment to achieve its
goals.

• Performance measure: A way to evaluate the success or failure of the
agent's actions.

• Rationality: The ability to make decisions based on logical reasoning and
optimize behavior to achieve its goals, considering its perception of the
environment and the performance measure.

PEAS
 PEAS in AI is an acronym representing the foundational components that

define an artificial intelligence agent's behavior. It stands for Performance
Measure, Environment, Actuators, and Sensors.

 Performance Measure refers to the criterion an AI agent uses to evaluate its
actions; the environment encompasses the external context it operates within,
Actuators are the mechanisms enabling the agent to interact with the
environment, and Sensors provide the agent with the means to perceive and
gather information.

 PEAS serves as a structured approach to designing and understanding AI
systems, aiding in conceptualizing objectives, interactions, and constraints.
Whether applied to self-driving cars, virtual assistants, or medical diagnosis,

https://www.simplilearn.com/evolution-of-the-intelligent-car-article

 DEPT. OF AIML PAGE 14

the PEAS framework offers a systematic lens to dissect and model AI's role
within its surroundings.

 DEPT. OF AIML PAGE 15

Types of Environments in AI
An environment in artificial intelligence is the surrounding of the agent. The agent
takes input from the environment through sensors and delivers the output to the
environment through actuators. There are several types of environments:

• Fully Observable vs Partially Observable
• Deterministic vs Stochastic
• Competitive vs Collaborative
• Single-agent vs Multi-agent
• Static vs Dynamic
• Discrete vs Continuous
• Episodic vs Sequential
• Known vs Unknown

1. Fully Observable vs Partially Observable

 When an agent sensor is capable to sense or access the complete state of an
agent at each point in time, it is said to be a fully observable environment else
it is partially observable.

 Maintaining a fully observable environment is easy as there is no need to keep
track of the history of the surrounding.

 An environment is called unobservable when the agent has no sensors in all
environments.

 Examples:
• Chess – the board is fully observable, and so are the opponent’s

moves.
• Driving – the environment is partially observable because what’s

around the corner is not known.

2. Deterministic vs Stochastic
 When a uniqueness in the agent’s current state completely determines the next

state of the agent, the environment is said to be deterministic.
 The stochastic environment is random in nature which is not unique and cannot

be completely determined by the agent.
 Examples:
• Chess – there would be only a few possible moves for a coin at the current

state and these moves can be determined.
• Self-Driving Cars- the actions of a self-driving car are not unique, it varies

time to time.

3. Competitive vs Collaborative
 An agent is said to be in a competitive environment when it competes against

another agent to optimize the output.
 The game of chess is competitive as the agents compete with each other to win

the game which is the output.
 An agent is said to be in a collaborative environment when multiple agents

cooperate to produce the desired output.

 DEPT. OF AIML PAGE 16

 When multiple self-driving cars are found on the roads, they cooperate with
each other to avoid collisions and reach their destination which is the output
desired.

4. Single-agent vs Multi-agent
 An environment consisting of only one agent is said to be a single-agent

environment.
 A person left alone in a maze is an example of the single-agent system.
 An environment involving more than one agent is a multi-agent environment.
 The game of football is multi-agent as it involves 11 players in each team.

5. Dynamic vs Static

 An environment that keeps constantly changing itself when the agent is up with
some action is said to be dynamic.

 A roller coaster ride is dynamic as it is set in motion and the environment keeps
changing every instant.

 An idle environment with no change in its state is called a static environment.
 An empty house is static as there’s no change in the surroundings when an agent

enters.

6. Discrete vs Continuous
 If an environment consists of a finite number of actions that can be deliberated

in the environment to obtain the output, it is said to be a discrete environment.
 The game of chess is discrete as it has only a finite number of moves. The

number of moves might vary with every game, but still, it’s finite.
 The environment in which the actions are performed cannot be numbered i.e.

is not discrete, is said to be continuous.
 Self-driving cars are an example of continuous environments as their actions

are driving, parking, etc. which cannot be numbered.

7.Episodic vs Sequential
 In an Episodic task environment, each of the agent’s actions is divided into

atomic incidents or episodes. There is no dependency between current and
previous incidents. In each incident, an agent receives input from the
environment and then performs the corresponding action.

 Example: Consider an example of Pick and Place robot, which is used to detect
defective parts from the conveyor belts. Here, every time robot(agent) will make
the decision on the current part i.e. there is no dependency between current and
previous decisions.

 In a Sequential environment, the previous decisions can affect all future
decisions. The next action of the agent depends on what action he has taken
previously and what action he is supposed to take in the future.

 Example:
 Checkers- Where the previous move can affect all the following moves.

8. Known vs Unknown

 In a known environment, the output for all probable actions is given. Obviously,
in case of unknown environment, for an agent to make a decision, it has to gain
knowledge about how the environment works.

 DEPT. OF AIML PAGE 17

Agent program
The task of AI is to design an agent program which implements the agent function.
The structure of an intelligent agent is a combination of architecture and agent
program. It can be viewed as:

Agent = Architecture + Agent program
Following are the main three terms involved in the structure of an AI agent:
Architecture: Architecture is machinery that an AI agent executes on.
Agent Function: Agent function is used to map a percept to an action.

Types of Agents in AI
Agents can be grouped into five classes based on their degree of perceived intelligence
and capability. All these agents can improve their performance and generate better
action over the time. These are given below:

o Simple Reflex Agent
o Model-based reflex agent
o Goal-based agents
o Utility-based agent
o Learning agent

1. Simple Reflex agent:

o The Simple reflex agents are the simplest agents. These agents take decisions
on the basis of the current percepts and ignore the rest of the percept history.

o These agents only succeed in the fully observable environment.
o The Simple reflex agent does not consider any part of percepts history during

their decision and action process.
o The Simple reflex agent works on Condition-action rule, which means it maps

the current state to action. Such as a Room Cleaner agent, it works only if there
is dirt in the room.

o Problems for the simple reflex agent design approach:
o They have very limited intelligence
o They do not have knowledge of non-perceptual parts of the current state
o Mostly too big to generate and to store.
o Not adaptive to changes in the environment.

 DEPT. OF AIML PAGE 18

2. Model-based reflex agent

o The Model-based agent can work in a partially observable environment, and
track the situation.

o A model-based agent has two important factors:
o Model: It is knowledge about "how things happen in the world," so it is

called a Model-based agent.
o Internal State: It is a representation of the current state based on

percept history.
o These agents have the model, "which is knowledge of the world" and based on

the model they perform actions.
o Updating the agent state requires information about:

o How the world evolves
o How the agent's action affects the world.

 DEPT. OF AIML PAGE 19

3. Goal-based agents
o The knowledge of the current state environment is not always sufficient to

decide for an agent to what to do.
o The agent needs to know its goal which describes desirable situations.
o Goal-based agents expand the capabilities of the model-based agent by having

the "goal" information.
o They choose an action, so that they can achieve the goal.
o These agents may have to consider a long sequence of possible actions before

deciding whether the goal is achieved or not. Such considerations of different
scenario are called searching and planning, which makes an agent proactive.

 DEPT. OF AIML PAGE 20

4. Utility-based agents

o These agents are similar to the goal-based agent but provide an extra
component of utility measurement which makes them different by providing a
measure of success at a given state.

o Utility-based agent act based not only goals but also the best way to achieve the
goal.

o The Utility-based agent is useful when there are multiple possible alternatives,
and an agent has to choose in order to perform the best action.

o The utility function maps each state to a real number to check how efficiently
each action achieves the goals.

5. Learning Agents

o A learning agent in AI is the type of agent which can learn from its past
experiences, or it has learning capabilities.

o It starts to act with basic knowledge and then able to act and adapt
automatically through learning.

o A learning agent has mainly four conceptual components, which are:

 DEPT. OF AIML PAGE 21

1. Learning element: It is responsible for making improvements by
learning from environment

2. Critic: Learning element takes feedback from critic which describes
that how well the agent is doing with respect to a fixed performance
standard.

3. Performance element: It is responsible for selecting external action
4. Problem generator: This component is responsible for suggesting

actions that will lead to new and informative experiences.
o Hence, learning agents are able to learn, analyze performance, and look for new

ways to improve the performance.

Agent components
Agents can be represented in three ways:

 Atomic/factored/structured is a qualitative measure of how much "internal
structure" those models have, from least to most. Atomic models have no
internal structure; the state either does or does not match what you're looking
for. In a sliding tile puzzle, for instance, you either have the correct alignment
of tiles or you do not.

 Factored models have more internal structure, although exactly what will
depend on the problem. Typically, you're looking at variables or performance
metrics of interest; in a sliding puzzle, this might be a simple heuristic like
"number of tiles out of place," or "sum of manhatten distances."

 Structured models have still more; again, exactly what depends on the
problem, but they're often relations either of components of the model to itself, or

components of the model to components of the environment.

 DEPT. OF AIML PAGE 22

MODULE-2

Problem Solving Agents

 In goal formulation, we decide which aspects we are interested in and which
aspects can be ignored.

 In the goal formulation process, the goal is to be set and we should assess those
states in which the goal is satisfied.

 In problem formulation, we decide how to manipulate the important aspects, and
ignore the others. So, without doing goal formulation, if we do the problem
formulation, we would not know what to include in our problem and what to leave,
and what should be achieved.

 So problem formulation must follow goal formulation. That means problem
formulation must be done only after the goal formation is done.

 The process of looking for a sequence of actions that reaches the goal is called
search. A search algorithm takes a problem as input and returns a solution in the
form of an action sequence.

 Once a solution is found, the actions it recommends can be carried out. This is
called the execution phase. Thus, we have a simple “formulate, search, execute”
design for the agent.

Simple problem solving Agent

Steps performed by Problem-solving agent

 Goal Formulation: It is the first and simplest step in problem-solving. It
organizes the steps/sequence required to formulate one goal out of multiple
goals as well as actions to achieve that goal.

 DEPT. OF AIML PAGE 23

 Problem Formulation: It is the most important step of problem-solving which
decides what actions should be taken to achieve the formulated goal.

 There are following five components involved in problem formulation:
 Initial State: It is the starting state or initial step of the agent towards its goal.
 Actions: It is the description of the possible actions available to the agent.
 Transition Model: It describes what each action does.
 Goal Test: It determines if the given state is a goal state.
 Path cost: It assigns a numeric cost to each path that follows the goal. The

problem solving agent selects a cost function, which reflects its performance
measure.

o State-space of a problem is a set of all states which can be reached from
the initial state followed by any sequence of actions. The state-space
forms a directed map or graph where nodes are the states, links between
the nodes are actions, and the path is a sequence of states connected by
the sequence of actions.

 Search: It identifies all the best possible sequence of actions to reach the goal
state from the current state. It takes a problem as an input and returns solution
as its output.

 Solution: It finds the best algorithm out of various algorithms, which may be
proven as the best optimal solution.

 Execution: It executes the best optimal solution from the searching algorithms
to reach the goal state from the current state n goal formulation.

Example problems
Basically, there are two types of problem approaches:

 Toy Problem: It is a concise and exact description of the problem which is used
by the researchers to compare the performance of algorithms.

 Real-world Problem: It is real-world based problems which require solutions.
Unlike a toy problem, it does not depend on descriptions, but we can have a
general formulation of the problem.

Some Toy Problems

Vaccuum cleaner problem
This can be formulated as a problem as follows:

 States: The state is determined by both the agent location and the dirt
locations. The agent is in one of two locations, each of which might or might
not contain dirt. Thus, there are 2 × 22 = 8 possible world states.

 Initial state: Any state can be designated as the initial state.
 Actions: In this simple environment, each state has just three actions: Left,

Right, and Suck. Larger environments might also include Up and Down.
 Transition model: The actions have their expected effects, except that moving

Left in the leftmost square, moving Right in the rightmost square, and Sucking
in a clean square have no effect.

 Goal test: This checks whether all the squares are clean.
 Path cost: Each step costs 1, so the path cost is the number of steps in the path.

 DEPT. OF AIML PAGE 24

State space of Vacuum cleaner problem

8 Puzzle Problem:
Here, we have a 3×3 matrix with movable tiles numbered from 1 to 8 with a blank
space. The tile adjacent to the blank space can slide into that space. The objective is to
reach a specified goal state similar to the goal state, as shown in the below figure. The
task is to convert the current state into goal state by sliding digits into the blank space.

Here the task is to convert the current(Start) state into goal state by sliding digits into
the blank space. The problem formulation is as follows:

 States: It describes the location of each numbered tiles and the blank tile.
 Initial State: We can start from any state as the initial state.
 Actions: Here, actions of the blank space is defined, i.e., either left, right, up or

down
 Transition Model: It returns the resulting state as per the given state and

actions.
 Goal test: It identifies whether we have reached the correct goal-state.
 Path cost: The path cost is the number of steps in the path where the cost of

each step is 1.

 DEPT. OF AIML PAGE 25

Note: The 8-puzzle problem is a type of sliding-block problem which is used for testing
new search algorithms in artificial intelligence.

8-queens problem:
The aim of this problem is to place eight queens on a chessboard in an order where no
queen may attack another. A queen can attack other queens either diagonally or in
same row and column. From the following figure, we can understand the problem as
well as its correct solution

It is noticed from the above figure that each queen is set into the chessboard in a
position where no other queen is placed diagonally, in same row or column. Therefore,
it is one right approach to the 8-queens problem. For this problem, there are two main
kinds of formulation: 1. Incremental formulation: It starts from an empty state where
the operator augments a queen at each step. Following steps are involved in this
formulation:

 States: Arrangement of any 0 to 8 queens on the chessboard

 .• Initial State: An empty chessboard
 Actions: Add a queen to any empty box.
 Transition model: Returns the chessboard with the queen added in a box.
 Goal test: Checks whether 8-queens are placed on the chessboard without any

attack. • Path cost: There is no need for path cost because only final states are
counted. In this formulation, there is approximately 1.8 x 1014 possible sequence
to investigate.

Complete-state formulation: It starts with all the 8-queens on the chessboard and
moves them around, saving from the attacks. Following steps are involved in this
formulation

 States: Arrangement of all the 8 queens one per column with no queen attacking
the other queen.

 Actions: Move the queen at the location where it is safe from the attacks.
This formulation is better than the incremental formulation as it reduces the state
space from 1.8 x 1014 to 2057, and it is easy to find the solutions.

Number problem
Knuth conjectured that, starting with the number 4, a sequence of factorial, square
root, and floor operations will reach any desired positive integer.

 DEPT. OF AIML PAGE 26

The problem definition is very simple:
 • States: Positive numbers.
• Initial state: 4.
• Actions: Apply factorial, square root, or floor operation (factorial for integers only).
 • Transition model: As given by the mathematical definitions of the operations.
• Goal test: State is the desired positive integer

Real-world problems

Route-finding algorithms
They are used in a variety of applications. Some, such as Web sites and in-car

systems that provide driving directions, are relatively straightforward extensions of
the Romania example. . Consider the airline travel problems that must be solved by a
travel-planning Web site:

 States: Each state obviously includes a location (e.g., an airport) and the current
time.

 Initial state: This is specified by the user’s query.
 Actions: Take any flight from the current location, in any seat class, leaving after

the current time, leaving enough time for within-airport transfer if needed.
 Transition model: The state resulting from taking a flight will have the flight’s

destination as the current location and the flight’s arrival time as the current
time.

 Goal test: Are we at the final destination specified by the user?
 Path cost: This depends on monetary cost, waiting time, flight time, customs

and immigration procedures, seat quality, time of day, type of airplane,
frequent-flyer mileage awards, and so on

Touring problems
They are closely related to route-finding problems, but with an important

difference. As with route finding, the actions correspond to trips between adjacent
cities. The state space, however, is quite different. Each state must include not just the
current location but also the set of cities the agent has visited. The goal test would
check whether the agent is in a place and all cities have been visited

The travelling salesman problem
It is a graph computational problem where the salesman needs to visit all cities

(represented using nodes in a graph) in a list just once and the distances (represented
using edges in the graph) between all these cities are known. The solution that is
needed to be found for this problem is the shortest possible route in which the
salesman visits all the cities and returns to the origin city.

 DEPT. OF AIML PAGE 27

A VLSI layout problem
This requires positioning millions of components and connections on a chip to

minimize area, minimize circuit delays, minimize stray capacitances, and maximize
manufacturing yield. The layout problem comes after the logical design phase and is
usually split into two parts: cell layout and channel routing.

In cell layout, the primitive components of the circuit are grouped into cells,
each of which performs some recognized function. Each cell has a fixed footprint (size
and shape) and requires a certain number of connections to each of the other cells. The
aim is to place the cells on the chip so that they do not overlap and so that there is
room for the connecting wires to be placed between the cells.

Channel routing finds a specific route for each wire through the gaps between
the cells. These search problems are extremely complex, but definitely worth solving.

Robot navigation
Here a robot can move in a continuous space with (in principle) an infinite set

of possible actions and states. For a circular robot moving on a flat surface, the space
is essentially two-dimensional. When the robot has arms and legs or wheels that must
also be controlled, the search space becomes many-dimensional. Advanced techniques
are required just to make the search space finite.

Protein design problem
 The goal in rational protein design is to predict amino acid sequences that

will fold to a specific protein structure. Although the number of possible protein
sequences is vast, growing exponentially with the size of the protein chain, only a
subset of them will fold reliably and quickly to one native state.

 Protein design involves identifying novel sequences within this subset. The native
state of a protein is the conformational free energy minimum for the chain.

 In design, a tertiary structure is specified, and a sequence that will fold to it is
identified. Hence, it is also termed inverse folding. Protein design is then an
optimization problem: using some scoring criteria, an optimized sequence that will
fold to the desired structure is chosen.

Searching for Solutions
 Search tree is a tree generated as the search space is traversed. The search space

itself is not necessarily a tree, frequently it is a graph. This tree specifies possible
paths through the search space.

 Expansion of nodes occurs as states are explored, the corresponding nodes are
expanded by applying the successor function which generates a new set of
(child) nodes.

 Fringe (frontier) is the set of nodes not yet visited and newly generated nodes
are added to the fringe.

 Search strategy determines the selection of the next node to be expanded. It can
be achieved by ordering the nodes in the fringe – e.g. queue (FIFO), stack
(LIFO), “best” node w.r.t. some measure (cost).

 A loopy path is a special case of redundant paths, where there are more than one
paths from one state to another (for example, Arad — Sibiu and Arad — Zerind
— Oradea — Sibiu).

https://en.wikipedia.org/wiki/Amino_acid
https://en.wikipedia.org/wiki/Protein_primary_structure
https://en.wikipedia.org/wiki/Protein_folding
https://en.wikipedia.org/wiki/Native_state
https://en.wikipedia.org/wiki/Thermodynamic_free_energy
https://en.wikipedia.org/wiki/Protein_tertiary_structure

 DEPT. OF AIML PAGE 28

 The redundant path situation occurs in almost every problem, and often makes
the solution algorithm less efficient, worsening the performance of the searching
agent. One way to eliminate the redundancy is to utilize the advantage given by
the problem definition itself. For example, in the case of traveling from Arad to
Bucharest, since the path costs are additive and step costs are non-negative, only
one path among the various redundant paths has the least cost (and it is the
shortest distance between the two states), and loopy paths are never better than
the same path with loops removed.

Graph Search
Tree search can be used is the state space is a tree, otherwise graph search must

be used. All search algorithms (BFS, DFS, uniform-cost, A*, etc) are variations of one
of these (usually graph search). The only difference between tree search and graph
search is that tree search does not need to store the explored set, because we are
guaranteed never to attempt to visit the same state twice.

Tree Search Algorithm:

Graph Search Algorithm:

The separation property of GRAPH-SEARCH is illustrated on a rectangular-grid
problem in the following figure. The frontier (white nodes) always separates the
explored region of the state space (black nodes) from the unexplored region (gray
nodes). In (a), just the root has been expanded. In (b), one leaf node has been
expanded. In (c), the remaining successors of the root have been expanded in
clockwise order.

 DEPT. OF AIML PAGE 29

Infrastructure for Search Algorithms
For each node n of the tree, we have a structure that contains five components:

 n.STATE: the state in the state space to which the node corresponds.
 n.PARENT: the node in the search tree that generated this node.
 n.ACTION: the action that was applied to the parent to generate the node.
 n.DEPTH: the depth of tho node n, i.e., number of nodes in the path from the

rood to this node n.
 n.PATH-COST: the cost, traditionally denoted by g(n), of the path from the

initial state to the node, as indicated by the parent pointers.

Eg:

Algorithm for maintenance of the infrastructure

Measuring Performance of Search algorithms:
Strategies are evaluated based on:

 completeness—does it always find a solution if one exists?
 time complexity—number of nodes generated/expanded space

 DEPT. OF AIML PAGE 30

 complexity—maximum number of nodes in memory
 optimality—does it always find a least-cost solution?

Time and space complexity are measured in terms of :
 b—maximum branching factor of the search tree
 d—depth of the least-cost solution
 m—maximum depth of the state space (may be ∞)

Types of search algorithms
Based on the search problems we can classify the search algorithms into uninformed
(Blind search) search and informed search (Heuristic search) algorithms.

Uninformed/Blind Search:
The uninformed search does not contain any domain knowledge such as closeness, the
location of the goal. It operates in a brute-force way as it only includes information
about how to traverse the tree and how to identify leaf and goal nodes. Uninformed
search applies a way in which search tree is searched without any information about
the search space like initial state operators and test for the goal, so it is also called blind
search. It examines each node of the tree until it achieves the goal node.

Breadth-first Search:
o Breadth-first search is the most common search strategy for traversing a tree or

graph. This algorithm searches breadthwise in a tree or graph, so it is called
breadth-first search.

o BFS algorithm starts searching from the root node of the tree and expands all
successor node at the current level before moving to nodes of next level.

o The breadth-first search algorithm is an example of a general-graph search
algorithm.

o Breadth-first search implemented using FIFO queue data structure.
Advantages:

o BFS will provide a solution if any solution exists.

 DEPT. OF AIML PAGE 31

o If there are more than one solutions for a given problem, then BFS will provide
the minimal solution which requires the least number of steps.

Disadvantages:
o It requires lots of memory since each level of the tree must be saved into

memory to expand the next level.
o BFS needs lots of time if the solution is far away from the root node.

Example:

Algorithm:

Time Complexity: Time Complexity of BFS algorithm can be obtained by the
number of nodes traversed in BFS until the shallowest Node. Where the d= depth of
shallowest solution and b is a node at every state.
T (b) = 1+b2+b3+.......+ bd= O (bd)
Space Complexity: Space complexity of BFS algorithm is given by the Memory size
of frontier which is O(bd).
Completeness: BFS is complete, which means if the shallowest goal node is at some
finite depth, then BFS will find a solution.
Optimality: BFS is optimal if path cost is a non-decreasing function of the depth of
the node.

Uniform-cost Search Algorithm:
Uniform-cost search is a searching algorithm used for traversing a weighted tree or
graph. This algorithm comes into play when a different cost is available for each edge.
The primary goal of the uniform-cost search is to find a path to the goal node which
has the lowest cumulative cost. Uniform-cost search expands nodes according to their

 DEPT. OF AIML PAGE 32

path costs form the root node. It can be used to solve any graph/tree where the optimal
cost is in demand. A uniform-cost search algorithm is implemented by the priority
queue. It gives maximum priority to the lowest cumulative cost. Uniform cost search
is equivalent to BFS algorithm if the path cost of all edges is the same.
Advantages:

o Uniform cost search is optimal because at every state the path with the least
cost is chosen.

Disadvantages:
o It does not care about the number of steps involve in searching and only

concerned about path cost. Due to which this algorithm may be stuck in an
infinite loop.

Eg:

Hence at each level, minimum cost is considered and other paths are discarded.
Completeness:
Uniform-cost search is complete, such as if there is a solution, UCS will find it.
Time Complexity:
Let C* is Cost of the optimal solution, and ε is each step to get closer to the goal node.
Then the number of steps is = C*/ε+1. Here we have taken +1, as we start from state 0
and end to C*/ε. Hence, the worst-case time complexity of Uniform-cost search is
O(b1 + [C*/ε])/.
Space Complexity:
The same logic is for space complexity so, the worst-case space complexity of Uniform-
cost search is O(b1 + [C*/ε]).
Optimal:
Uniform-cost search is always optimal as it only selects a path with the lowest path
cost.

 DEPT. OF AIML PAGE 33

Algorithm:

Depth-first Search

o Depth-first search isa recursive algorithm for traversing a tree or graph data
structure.

o It is called the depth-first search because it starts from the root node and follows
each path to its greatest depth node before moving to the next path.

o DFS uses a stack data structure for its implementation.
o The process of the DFS algorithm is similar to the BFS algorithm.

Advantages:

o DFS requires very less memory as it only needs to store a stack of the nodes on
the path from root node to the current node.

o It takes less time to reach to the goal node than BFS algorithm (if it traverses in
the right path).

Disadvantages:
o There is the possibility that many states keep re-occurring, and there is no

guarantee of finding the solution.
o DFS algorithm goes for deep down searching and sometime it may go to the

infinite loop.
o Completeness: DFS search algorithm is complete within finite state space as it

will expand every node within a limited search tree.
o Time Complexity: Time complexity of DFS will be equivalent to the node

traversed by the algorithm. It is given by:
o T(n)= 1+ n2+ n3 +.........+ nm=O(nm)
o Where, m= maximum depth of any node and this can be much larger than d

(Shallowest solution depth)
o Space Complexity: DFS algorithm needs to store only single path from the root

node, hence space complexity of DFS is equivalent to the size of the fringe set,
which is O(bm).

o Optimal: DFS search algorithm is non-optimal, as it may generate a large

 DEPT. OF AIML PAGE 34

number of steps or high cost to reach to the goal node.

Example:

Once a wrong path is chosen, then pruning of entire subtree is done.

Depth-Limited Search Algorithm:
A depth-limited search algorithm is similar to depth-first search with a predetermined
limit. Depth-limited search can solve the drawback of the infinite path in the Depth-
first search. In this algorithm, the node at the depth limit will treat as it has no
successor nodes further.
Depth-limited search can be terminated with two Conditions of failure:

o Standard failure value: It indicates that problem does not have any solution.
o Cutoff failure value: It defines no solution for the problem within a given depth

limit.

Advantages:
Depth-limited search is Memory efficient.

Disadvantages:
o Depth-limited search also has a disadvantage of incompleteness.
o It may not be optimal if the problem has more than one solution.

 DEPT. OF AIML PAGE 35

Algorithm:

Eg:

Iterative deepening Depth-first Search:
The iterative deepening algorithm is a combination of DFS and BFS algorithms. This
search algorithm finds out the best depth limit and does it by gradually increasing the
limit until a goal is found. This algorithm performs depth-first search up to a certain
"depth limit", and it keeps increasing the depth limit after each iteration until the goal
node is found. This Search algorithm combines the benefits of Breadth-first search's
fast search and depth-first search's memory efficiency.

The iterative search algorithm is useful uninformed search when search space
is large, and depth of goal node is unknown.

Advantages:

o It combines the benefits of BFS and DFS search algorithm in terms of fast
search and memory efficiency.

Disadvantages:
o The main drawback of IDDFS is that it repeats all the work of the previous

phase.

Limit=2

 DEPT. OF AIML PAGE 36

Eg:

Different iterations of Iterative Deepening Search

Bidirectional Search Algorithm:
Bidirectional search algorithm runs two simultaneous searches, one form initial state
called as forward-search and other from goal node called as backward-search, to find
the goal node. Bidirectional search replaces one single search graph with two small
subgraphs in which one starts the search from an initial vertex and other starts from
goal vertex. The search stops when these two graphs intersect each other. Bidirectional
search can use search techniques such as BFS, DFS, DLS, etc.

Advantages:

o Bidirectional search is fast.
o Bidirectional search requires less memory

Disadvantages:

o Implementation of the bidirectional search tree is difficult.

 DEPT. OF AIML PAGE 37

o In bidirectional search, one should know the goal state in advance.

Example:
In the below search tree, bidirectional search algorithm is applied. This algorithm
divides one graph/tree into two sub-graphs. It starts traversing from node 1 in the
forward direction and starts from goal node 16 in the backward direction.
The algorithm terminates at node 9 where two searches meet.

Completeness: Bidirectional Search is complete if we use BFS in both searches.
Time Complexity: Time complexity of bidirectional search using BFS is O(bd).
Space Complexity: Space complexity of bidirectional search is O(bd).
Optimal: Bidirectional search is Optimal.

Informed (Heuristic) Search Strategies
 Informed search algorithm contains an array of knowledge such as how far we

are from the goal, path cost, how to reach to goal node, etc. This knowledge help
agents to explore less to the search space and find more efficiently the goal
node.

 The informed search algorithm is more useful for large search space. Informed
search algorithm uses the idea of heuristic, so it is also called Heuristic search.

 Heuristics function: Heuristic is a function which is used in Informed Search,
and it finds the most promising path. It takes the current state of the agent as
its input and produces the estimation of how close agent is from the goal. The
heuristic method, however, might not always give the best solution, but it
guaranteed to find a good solution in reasonable time. Heuristic function
estimates how close a state is to the goal. It is represented by h(n), and it
calculates the cost of an optimal path between the pair of states. The value of
the heuristic function is always positive.

 DEPT. OF AIML PAGE 38

Pure Heuristic Search:
Pure heuristic search is the simplest form of heuristic search algorithms. It expands
nodes based on their heuristic value h(n). It maintains two lists, OPEN and CLOSED
list. In the CLOSED list, it places those nodes which have already expanded and in the
OPEN list, it places nodes which have yet not been expanded.
On each iteration, each node n with the lowest heuristic value is expanded and
generates all its successors and n is placed to the closed list. The algorithm continues
unit a goal state is found. In the informed search there are two main algorithms:

o Best First Search Algorithm(Greedy search)
o A* Search Algorithm

Best-first Search Algorithm (Greedy Search):
Greedy best-first search algorithm always selects the path which appears best at that
moment. It is the combination of depth-first search and breadth-first search
algorithms. It uses the heuristic function and search. Best-first search allows us to take
the advantages of both algorithms. With the help of best-first search, at each step, we
can choose the most promising node. In the best first search algorithm, we expand the
node which is closest to the goal node and the closest cost is estimated by heuristic
function, i.e.

f(n)= h(n).
Were, h(n)= estimated cost from node n to the goal.

Advantages:

o Best first search can switch between BFS and DFS by gaining the advantages of
both the algorithms.

o This algorithm is more efficient than BFS and DFS algorithms.

Disadvantages:
o It can behave as an unguided depth-first search in the worst case scenario.

 DEPT. OF AIML PAGE 39

o It can get stuck in a loop as DFS.
o This algorithm is not optimal.

Problem

Solution:

Solution:

 DEPT. OF AIML PAGE 40

 DEPT. OF AIML PAGE 41

Problem:

Solution:

 DEPT. OF AIML PAGE 42

 DEPT. OF AIML PAGE 43

Problem:

Solution:

 A* Search Algorithm:
A* search is the most commonly known form of best-first search. It uses

heuristic function h(n), and cost to reach the node n from the start state g(n). It has
combined features of UCS and greedy best-first search, by which it solves the problem

 DEPT. OF AIML PAGE 44

efficiently. A* search algorithm finds the shortest path through the search space using
the heuristic function. This search algorithm expands less search tree and provides
optimal result faster. A* algorithm is similar to UCS except that it uses g(n)+h(n)
instead of g(n). In A* search algorithm, we use search heuristic as well as the cost to
reach the node. Hence, we can combine both costs as following, and this sum is called
as a fitness number.

Advantages:

o A* search algorithm is the best algorithm than other search algorithms.
o A* search algorithm is optimal and complete.
o This algorithm can solve very complex problems.

Disadvantages:

o It does not always produce the shortest path as it mostly based on heuristics
and approximation.

o A* search algorithm has some complexity issues.
o The main drawback of A* is memory requirement as it keeps all generated

nodes in the memory, so it is not practical for various large-scale problems.

Problem:

Solution:

 DEPT. OF AIML PAGE 45

Problem:

 DEPT. OF AIML PAGE 46

Solution:

 DEPT. OF AIML PAGE 47

Admissibility of A* search:
 The heuristic function h(n) is called admissible if h(n) is never larger than h*(n),

namely h(n) is always less or equal to true cheapest cost from n to the goal.
 A* is admissible if it uses an admissible heuristic, and h(goal) = 0
 If the heuristic function, h always underestimates the true cost (h(n) is smaller

than h*(n)), then A* is guaranteed to find an optimal solution.
 Consistency of A* search:
 A heuristic is consistent if for every node n, every successor n' of n generated by

any action a, h(n) ≤ c(n,a,n') + h(n')
 If h is consistent, we have f(n') = g(n') + h(n') = g(n) + c(n,a,n') + h(n') ≥ g(n) +

h(n) = f(n), f(n) is non-decreasing along any path.

 DEPT. OF AIML PAGE 48

Recursive Best First Search
It is simple recursive algorithm that resembles the operation of standard best first
search but uses only linear space. It is similar to recursive DFS and differs from
Recursive DFS as follows: It keeps track of the f value of the best alternative path
available from any ancestor of the current node. Instead of continuing indefinitely
down the current path.

Algorithm:

 DEPT. OF AIML PAGE 49

Problem:

Solution:

 DEPT. OF AIML PAGE 50

 DEPT. OF AIML PAGE 51

Memory Bound Search Algorithms:
IDA* (Iterative-Deepening A*)
IDA* algorithm - IDA* uses the same idea of DFID algorithm and uses the
admissibility of the heuristic function by limiting the f-cost of the nodes examined by
the DFS search, rather than the depth. IDA* (memory-bounded) algorithm does not
keep any previously explored path (the same as A*). It needs to re-expand path if it is
necessary and this will be a costly operation

Memory Bounded A* (MA*)
MA* is near-identical to A* aside from key differences:
When the number of nodes in OPEN and CLOSED reaches some preset limit, MA*
prunes the OPEN list by removing the leaf-node with highest f-cost.
For each new successor the f-cost is propagated back up the tree.
This keeps the tree very “informed” allowing the search to make better decisions, at
the cost of some overhead.

Simplified MA* (SMA*)
SMA∗ proceeds just like A*, expanding the best leaf until memory is full. At this point,
it cannot add a new node to the search tree without dropping an old one. SMA∗ always
drops the worst leaf node—the one with the highest f-value. Like RBFS, SMA∗ then
backs up the value of the forgotten node to its parent. In this way, the ancestor of a

 DEPT. OF AIML PAGE 52

forgotten subtree knows the quality of the best path in that subtree. With this
information, SMA∗ regenerates the subtree only when all other paths have been shown
to look worse than the path it has forgotten. Another way of saying this is that, if all
the descendants of a node n are forgotten, then we will not know which way to go from
n, but we will still have an idea of how worthwhile it is to go anywhere from n

Heuristic Functions:
 A heuristic function in artificial intelligence, also known as a heuristic or simply

a heuristic, is an evaluation function used to estimate the cost or potential of
reaching a goal state from a given state in a problem-solving domain.

 Heuristics are typically rules of thumb or approximate strategies that guide the
search for a solution. They provide a way to assess the desirability of different
options without exhaustively exploring every possibility.

 Heuristics are used to make informed decisions in situations where it's
computationally expensive to search through all possible states or actions. They
help prioritize the exploration of more promising paths.

Key Properties of Heuristic Functions
 Heuristic functions are essential components of AI problem-solving. To ensure

their effectiveness, it's crucial to understand their key properties. Let's dive into
two critical properties: admissibility and consistency.

 Admissibility is a fundamental property of heuristic functions that profoundly
influences their use in AI problem-solving.

 Admissibility refers to a property of heuristic functions that ensures they never
overestimate the true cost to reach a goal state. In other words, an admissible
heuristic provides a lower bound on the actual cost.

 Imagine planning a road trip using a GPS navigation system. If the GPS
estimates the travel time to be 4 hours, it's admissible if you reach your
destination in less than or exactly 4 hours, but it's inadmissible if it takes longer.
Admissible heuristics set an upper limit on the estimated cost.

 Admissible heuristics guarantee that search algorithms exploring the state
space won't overlook optimal solutions. They create a balance, ensuring that the
algorithm doesn't prematurely discard paths that might lead to the best
outcome.

 Consistency, also known as the monotonicity property, is another critical aspect
of heuristic functions.

 Consistency defines a heuristic's behavior by considering the estimated cost
from the current state to a successor state along with the heuristic value of the
successor state. If this combined value is always greater than or equal to the
heuristic value of the current state, the heuristic is considered consistent.

 Let's return to our travel analogy. Suppose we're assessing travel times between
cities. If the estimated travel time from City A to City B (the current state) plus
the estimated travel time from City B to City C (the successor state) is greater
than or equal to the estimated travel time from City A to City C (the goal state),
then the heuristic is consistent.

 Consistent heuristics are particularly advantageous in informed search
algorithms like A*. They ensure that as the search algorithm progresses, it
doesn't encounter situations where a more promising path is overlooked due to
heuristic inconsistencies.

 DEPT. OF AIML PAGE 53

Methods for Designing and Developing Heuristic Functions:
When it comes to designing heuristic functions, several methods and strategies can be
employed. These methods are instrumental in developing heuristics that provide
valuable guidance to search algorithms.
Approaches for Heuristic Design:
1. Domain Knowledge: Leveraging expert knowledge about the problem domain to
construct heuristics.
2. Relaxation: Creating a simplified version of the problem where heuristics are more
easily derived and then transferring these heuristics back to the original problem.
3. Pattern Databases: Storing precomputed heuristic values for specific problem
subgoals, enabling efficient lookup during search.

Knowledge based Agents
 Knowledge-based agents are those agents who have the capability

of maintaining an internal state of knowledge, reason over that knowledge,
update their knowledge after observations and take actions. These agents can
represent the world with some formal representation and act intelligently.

 Knowledge-based agents are composed of two main parts:
o Knowledge-base and
o Inference system.

A knowledge-based agent must able to do the following:

 An agent should be able to represent states, actions, etc.
 An agent Should be able to incorporate new percepts
 An agent can update the internal representation of the world
 An agent can deduce the internal representation of the world
 An agent can deduce appropriate actions.

Knowledgebase (KB)
Knowledge-base is a central component of a knowledge-based agent, it is also known
as KB. It is a collection of sentences (here 'sentence' is a technical term and it is not
identical to sentence in English). These sentences are expressed in a language which
is called a knowledge representation language. The Knowledge-base of KBA stores fact
about the world. Knowledge-base is required for updating knowledge for an agent to
learn with experiences and take action as per the knowledge.

Operations Performed by KBA
Following are three operations which are performed by KBA in order to show the
intelligent behavior:

1. TELL: This operation tells the knowledge base what it perceives from the
environment.

2. ASK: This operation asks the knowledge base what action it should perform.
3. Perform: It performs the selected action.

Following is the structure outline of a generic knowledge-based agents program:
function KB-AGENT(percept):
persistent: KB, a knowledge base
 t, a counter, initially 0, indicating time
TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))

 DEPT. OF AIML PAGE 54

Action = ASK(KB, MAKE-ACTION-QUERY(t))
TELL(KB, MAKE-ACTION-SENTENCE(action, t))
 t = t + 1
 return action

 The knowledge-based agent takes percept as input and returns an action as

output. The agent maintains the knowledge base, KB, and it initially has some
background knowledge of the real world. It also has a counter to indicate the
time for the whole process, and this counter is initialized with zero.

 The MAKE-PERCEPT-SENTENCE generates a sentence as setting that the
agent perceived the given percept at the given time.

 The MAKE-ACTION-QUERY generates a sentence to ask which action should
be done at the current time.

 MAKE-ACTION-SENTENCE generates a sentence which asserts that the
chosen action was executed.

Various levels of knowledge-based agent:
A knowledge-based agent can be viewed at different levels which are given below:

1. Knowledge level
Knowledge level is the first level of knowledge-based agent, and in this level, we need
to specify what the agent knows, and what the agent goals are. With these
specifications, we can fix its behavior. For example, suppose an automated taxi agent
needs to go from a station A to station B, and he knows the way from A to B, so this
comes at the knowledge level.

2. Logical level:
At this level, we understand that how the knowledge representation of knowledge is
stored. At this level, sentences are encoded into different logics. At the logical level, an
encoding of knowledge into logical sentences occurs. At the logical level we can expect
to the automated taxi agent to reach to the destination B.

3. Implementation level:
This is the physical representation of logic and knowledge. At the implementation level
agent perform actions as per logical and knowledge level. At this level, an automated
taxi agent actually implements his knowledge and logic so that he can reach to the
destination.

Approaches to designing a knowledge-based agent:
There are mainly two approaches to build a knowledge-based agent:

1. Declarative approach: We can create a knowledge-based agent by initializing
with an empty knowledge base and telling the agent all the sentences with which
we want to start with. This approach is called Declarative approach.

2. Procedural approach: In the procedural approach, we directly encode desired
behavior as a program code. Which means we just need to write a program that
already encodes the desired behavior or agent.

 DEPT. OF AIML PAGE 55

However, in the real world, a successful agent can be built by combining both
declarative and procedural approaches, and declarative knowledge can often be
compiled into more efficient procedural code.

Wumpus world:
The Wumpus world is a simple world example to illustrate the worth of a

knowledge-based agent and to represent knowledge representation. It was inspired by
a video game Hunt the Wumpus by Gregory Yob in 1973.

The Wumpus world is a cave which has 4/4 rooms connected with passageways.
So there are total 16 rooms which are connected with each other. We have a
knowledge-based agent who will go forward in this world. The cave has a room with a
beast which is called Wumpus, who eats anyone who enters the room. The Wumpus
can be shot by the agent, but the agent has a single arrow. In the Wumpus world, there
are some Pits rooms which are bottomless, and if agent falls in Pits, then he will be
stuck there forever. The exciting thing with this cave is that in one room there is a
possibility of finding a heap of gold. So the agent goal is to find the gold and climb out
the cave without fallen into Pits or eaten by Wumpus. The agent will get a reward if he
comes out with gold, and he will get a penalty if eaten by Wumpus or falls in the pit.

 The rooms adjacent to the Wumpus room are smelly, so that it would have some
stench.

 The room adjacent to PITs has a breeze, so if the agent reaches near to PIT, then
he will perceive the breeze.

 There will be glitter in the room if and only if the room has gold.
 The Wumpus can be killed by the agent if the agent is facing to it, and Wumpus

will emit a horrible scream which can be heard anywhere in the cave.

 DEPT. OF AIML PAGE 56

PEAS description of Wumpus world:
To explain the Wumpus world we have given PEAS description as below:
Performance measure:

 +1000 reward points if the agent comes out of the cave with the gold.
 -1000 points penalty for being eaten by the Wumpus or falling into the pit.
 -1 for each action, and -10 for using an arrow.
 The game ends if either agent dies or came out of the cave.

Environment:
 A 4*4 grid of rooms.
 The agent initially in room square [1, 1], facing toward the right.
 Location of Wumpus and gold are chosen randomly except the first square [1,1].
 Each square of the cave can be a pit with probability 0.2 except the first square.

Actuators:
 Left turn,
 Right turn
 Move forward
 Grab
 Release
 Shoot.

Sensors:
 The agent will perceive the stench if he is in the room adjacent to the Wumpus.

(Not diagonally).
 The agent will perceive breeze if he is in the room directly adjacent to the Pit.
 The agent will perceive the glitter in the room where the gold is present.
 The agent will perceive the bump if he walks into a wall.
 When the Wumpus is shot, it emits a horrible scream which can be perceived

anywhere in the cave.
 These percepts can be represented as five element list, in which we will have

different indicators for each sensor.
 Example if agent perceives stench, breeze, but no glitter, no bump, and no

scream then it can be represented as:
[Stench, Breeze, None, None, None].

The Wumpus world Properties:
 Partially observable: The Wumpus world is partially observable because the

agent can only perceive the close environment such as an adjacent room.
 Deterministic: It is deterministic, as the result and outcome of the world are

already known.
 Sequential: The order is important, so it is sequential.
 Static: It is static as Wumpus and Pits are not moving.
 Discrete: The environment is discrete.
 One agent: The environment is a single agent as we have one agent only and

Wumpus is not considered as an agent.

 DEPT. OF AIML PAGE 57

Exploring the Wumpus world:

At room [2,2], here no stench and no breezes present so let's suppose agent decides
to move to [2,3]. At room [2,3] agent perceives glitter, so it should grab the gold
and climb out of the cave.

Logic
 Logic is a formal language to express real world sentences
 Syntax – notation to express sentences
 Semantics – meaning of the sentences
 Truth value – sentence truth value (True or False)
 Model – World for sentences

 DEPT. OF AIML PAGE 58

Entailment
If I was to tell you that either I was going to be promoted or get a big bonus because I
just landed a huge account for the company I work for, then you would think a few
things:

 If he doesn’t get promoted, then at least he’ll get compensated with a bonus
 If he doesn’t get a bonus, then at least he’ll get compensated with a promotion
 His company won’t both not promote him and not give him a bonus.

All of these claims follow from the original claim. They “follow” in the sense that if

the original claim is in fact true, then this conclusion must be true. There’s some sense
in which they “mean the same thing”: they describe the same world or claim the same
thing to be true about the world. A lot of logic consequence is similar: it’s a relationship
of “following” or “entailment” between statements which mean essentially the same
thing. Other logical consequences are cases where one statement entails another
statement (if the first is true, the second must be true), but not because they essentially
mean the same thing. Instead, because the first statement is making a “stronger” claim
than the other.
Logical entailment is denoted by:
Which means 𝛽 follows from 𝛼

Eg:

Then,
Another example:

𝜶| = 𝜷

𝛂𝟏-No pit in [1,2]
𝑲𝑩| = 𝜶𝟏

 DEPT. OF AIML PAGE 59

Entailment is like the needle being in the haystack; inference is like finding it. This
distinction is embodied in some formal notation: if an inference algorithm i can derive
α from KB, we write
KB ⊢i α , which is pronounced “α is derived from KB by i” or “i derives α from KB.”

 An inference algorithm that derives only entailment is called “sound”
 An inference algorithm that derives all possible entailment is called “complete”

Logical Reasoning with Entailment

Grounding
It is the connection between logical reasoning processes and the real environment in
which the agent exists. In particular, how do we know that KB is true in the real

𝛂𝟐-No pit in [2,2]

𝑲𝑩| ≠ 𝜶𝟐

 DEPT. OF AIML PAGE 60

world?. A simple answer is that the agent’s sensors create the connection. For
example, the wumpus-world agent has a smell sensor. The agent program creates a
suitable sentence whenever there is a smell. Then, whenever that sentence is in the
knowledge base, it is true in the real world.

Propositional logic in Artificial intelligence
Propositional logic (PL) is the simplest form of logic where all the statements are made
by propositions. A proposition is a declarative statement which is either true or false.
It is a technique of knowledge representation in logical and mathematical form.
Example:

 It is Sunday.
 The Sun rises from West (False proposition)
 3+3= 7(False proposition)
 5 is a prime number.

Propositional Logic syntax:

Atomic propositions are the simple propositions. It consists of a single proposition
symbol. These are the sentences which must be either true or false.
Compound propositions are constructed by combining simpler or atomic propositions,
using parenthesis and logical connectives.
Logical connectives are used to connect two simpler propositions or representing a
sentence logically. We can create compound propositions with the help of logical
connectives. There are mainly five connectives, which are given as follows:

1. Negation: A sentence such as ¬ P is called negation of P. A literal can be either
Positive literal or negative literal.

2. Conjunction: A sentence which has ∧ connective such as, P ∧ Q is called a
conjunction.
Example: Rohan is intelligent and hardworking. It can be written as,
P= Rohan is intelligent,Q= Rohan is hardworking. → P∧ Q.

 DEPT. OF AIML PAGE 61

3. Disjunction: A sentence which has ∨ connective, such as P ∨ Q. is called
disjunction, where P and Q are the propositions.
Example: "Ritika is a doctor or Engineer", Here P= Ritika is Doctor. Q= Ritika
is Doctor, so we can write it as P ∨ Q.

4. Implication: A sentence such as P → Q, is called an implication. Implications
are also known as if-then rules. It can be represented as: If it is raining, then
the street is wet. Let P= It is raining, and Q= Street is wet, so it is
represented as P → Q

5. Biconditional: A sentence such as P⇔ Q is a Biconditional sentence, example If
I am breathing, then I am alive, P= I am breathing, Q= I am alive, it can be
represented as P ⇔ Q.

Truth Table:
In propositional logic, we need to know the truth values of propositions in all possible
scenarios. We can combine all the possible combination with logical connectives, and
the representation of these combinations in a tabular format is called Truth table.
Following are the truth table for all logical connectives:

Write the following English sentences in symbolic form
1. If it rains, then I will stay at home

P: It rains
Q: I will stay at home
Representation: P->Q

 DEPT. OF AIML PAGE 62

2. He is poor but honest.
 P: He is poor, Q: He is honest, Representation: P ∧ Q
3. Birds fly if and only if sky is clear.
 P: Birds fly, Q: Sky is clear, Representation: P⇔ Q
4. I will go only if he stays.
 I will go if he stays.
 P: I will go, Q: He stays, Representation: P->Q
5. It is hot or else it is both cold and cloudy
 P: It is hot, Q: It is cold R: it is cloudy, Representation: P 𝜈 (𝑄𝛬R)
6. Either today is Sunday or Monday
 P: Today is Sunday, Q: Today is Monday, Representation: P 𝜈 𝑄

Consider,

There is no pit in [1,1]

A square is breezy if and only if there is a pit in a neighboring square.

For:

Write breeze for squares visited

 DEPT. OF AIML PAGE 63

Standard Logical Equivalences
Logical equivalence is the condition of equality that exists between two statements or
sentences in propositional logic. The relationship between the two statements
translates verbally into "if and only if." In mathematics, logical equivalence is typically
symbolized by a double arrow (⟺ or ⟷) or triple lines (≡).
This expression provides an example of logical equivalence between two simple
statements:
A ∨ B ⟺ B ∨ A
The expression includes the statements A ∨ B and B ∨ A, which are connected together
by the IIF function. Each statement uses the OR Boolean function (∨) to indicate an
inclusive disjunction between variables A and B. This means that the statement
returns a true value if either variable is true or if both variables are true, but it returns
a false value if both variables are false. The expression in its entirety is effectively
stating that the statement "variable A or variable B" is logically equivalent to the
statement "variable B or variable A."
Some of the standard logical equivalences:

Inference rules:
Inference rules are the templates for generating valid arguments. Inference rules are
applied to derive proofs in artificial intelligence, and the proof is a sequence of the
conclusion that leads to the desired goal. In inference rules, the implication among all
the connectives plays an important role. Following are some terminologies related to
inference rules:

https://www.techtarget.com/whatis/definition/variable

 DEPT. OF AIML PAGE 64

o Implication: It is one of the logical connectives which can be represented as P
→ Q. It is a Boolean expression.

o Converse: The converse of implication, which means the right-hand side
proposition goes to the left-hand side and vice-versa. It can be written as Q →
P.

o Contrapositive: The negation of converse is termed as contrapositive, and it can
be represented as ¬ Q → ¬ P.

o Inverse: The negation of implication is called inverse. It can be represented as
¬ P → ¬ Q.

Proof:

Types of Inference rules:

 Modus Ponens:
The Modus Ponens rule is one of the most important rules of inference, and it states
that if P and P → Q is true, then we can infer that Q will be true. It can be represented
as:

Example:
Statement-1: "If I am sleepy then I go to bed" ==> P→ Q
Statement-2: "I am sleepy" ==> P
Conclusion: "I go to bed." ==> Q.
Hence, we can say that, if P→ Q is true and P is true then Q will be true.

AND Elimination:
This rule states that if P∧ Q is true, then Q or P will also be true. It can be represented
as:

Prove logically that there is no pit in [1,2]
Knowledgebase:

Proof:

 DEPT. OF AIML PAGE 65

Proof by resolution
The idea of resolution is simple: if we know that

• p is true or q is true
• and we also know that p is false or r is true
• then it must be the case that q is true or r is true.

This line of reasoning is formalized in the
 Resolution Tautology:
(p V q) 𝛬 (¬ p V r) -> q V r
Eg: Given the following hypotheses:

1. If it rains, Joe brings his umbrella (r -> u)
2. If Joe has an umbrella, he doesn't get wet (u -> NOT w)
3. If it doesn't rain, Joe doesn't get wet (NOT r -> NOT w)

prove that Joes doesn't get wet (NOT w)
We first put each hypothesis in CNF:

1. r -> u == (NOT r OR u)
2. u -> NOT w == (NOT u OR NOT w)
3. NOT r -> NOT w == (r OR NOT w)

We then use resolution on the hypotheses to derive the conclusion (NOT w):
 1. NOT r OR u Premise

 2. NOT u OR NOT w Premise

 3. r OR NOT w Premise

 4. NOT r OR NOT w L1, L2, resolution

 5. NOT w OR NOT w L3, L4, resolution

 6. NOT w L5, idempotence

 DEPT. OF AIML PAGE 66

Prove logically that there is a pit in [3,1]

Conjunctive Normal Form
Resolution works best when the formula is of the special form: it is an ∧ of ∨s of
(possibly negated, ¬) variables (called literals).
Eg:
(yV¬z) 𝛬 (¬y) 𝛬 (y V z) CNF
(x V ¬y 𝛬 z) Not CNF

To convert a formula into a CNF.

 Convert double implication to single
 Open up the implications to get ORs.
 Get rid of double negations.
 Use Demorgans Law
 Use distributivity
 Eg: F V (G 𝛬 H) can be written as

o (F V G) 𝛬 (F V H)

¬𝐴 𝑉 (𝐵 ∧ C)

(¬𝐴 𝑉 𝐵) ∧ (¬𝐴 𝑉 𝐶)

Horn Clause in AI
The term "horn clause" refers to a disjunction of literals in which, at most, one
literal is not negated. A horn clause is a clause that has exactly one literal that is
not negated.The logician Alfred Horn first recognized the importance of Horn
clauses in 1951. Horn clauses are a type of logical formula used in logic
programming, formal specification, universal algebra, and model theory due to
their helpful qualities in these areas and others.

Types of Horn Clauses :

• Definite clause / Strict Horn clause – It has precisely one positive literal.
• Unit clause - Definite clause containing no negative literals.

𝑩𝟐,𝟏 ↔ 𝑷𝟏,𝟏V𝑷𝟑,𝟏V 𝑷𝟐,𝟐

(𝑩𝟐,𝟏 → 𝑷𝟏,𝟏V𝑷𝟑,𝟏V 𝑷𝟐,𝟐) 𝜦 (𝑷𝟏,𝟏V𝑷𝟑,𝟏V 𝑷𝟐,𝟐 → 𝑩𝟐,𝟏)

 𝑩𝟐,𝟏

(𝑷𝟏,𝟏V𝑷𝟑,𝟏V 𝑷𝟐,𝟐)

¬𝑷𝟏,𝟏

𝑷𝟑,𝟏V 𝑷𝟐,𝟐

¬𝑷𝟐,𝟐

𝑯𝒆𝒏𝒄𝒆, 𝑷𝟑,𝟏

Eg: Convert to CNF: A→ (B ∧ C)

 DEPT. OF AIML PAGE 67

• Goal clause – Horn clause lacking a literal positive.

Horn clauses perform a fundamental role in both constructive and computational
logic.

Syntax:

Inference Engines:
An inference engine is a component of an AI system that is responsible for drawing
conclusions based on evidence and information that is provided to it. In other words,
it is responsible for making deductions and inferences based on what it knows.
The inference engine is often compared to the human brain, as it is responsible for
making the same kinds of deductions and inferences that we do. However, the
inference engine is not limited by the same constraints as the human brain. It can
process information much faster and is not subject to the same biases and errors that
we are.

The inference engine is a critical component of AI systems because it is
responsible for making the decisions that the system needs to make in order to
function. Without an inference engine, an AI system would be little more than a
collection of data.

Types of Inference engines:

• Forward chaining: Forward chaining is a form of reasoning for an AI expert
system that starts with simple facts and applies inference rules to extract more
data until the goal is reached.

https://core.ac.uk/download/pdf/82190596.pdf

 DEPT. OF AIML PAGE 68

• Backward chaining: Backward chaining is another strategy used to shape an
AI expert system that starts with the end goal and works backward through the
AI’s rules to find facts that support the goal.

Forward Chaining:
Forward chaining is also known as a forward deduction or forward reasoning

method when using an inference engine. The forward-chaining algorithm starts from
known facts, triggers all rules whose premises are satisfied and adds their conclusion
to the known facts. This process repeats until the problem is solved. In this type of
chaining, the inference engine starts by evaluating existing facts, derivations, and
conditions before deducing new information. An endpoint, or goal, is achieved through
the manipulation of knowledge that exists in the knowledge base.

Forward Chaining Properties

• Forward chaining follows a down-up strategy, going from bottom to top.
• It uses known facts to start from the initial state (facts) and works toward the

goal state, or conclusion.
• The forward chaining method is also known as data-driven because we

achieve our objective by employing available data.
• The forward chaining method is widely used in expert systems such as CLIPS,

business rule systems and manufacturing rule systems.
• It uses a breadth-first search as it has to go through all the facts first.
• It can be used to draw multiple conclusions.

Eg:

Knowledgebase:

1. John’s credit score is 780.
2. A person with a credit score greater than 700 has never defaulted on their

loan.
3. John has an annual income of $100,000.
4. A person with a credit score greater than 750 is a low-risk borrower.
5. A person with a credit score between 600 to 750 is a medium-risk borrower.
6. A person with a credit score less than 600 is a high-risk borrower.
7. A low-risk borrower can be given a loan amount up to 4X of his annual income

at a 10 percent interest rate.
8. A medium-risk borrower can be given a loan amount of up to 3X of his annual

income at a 12 percent interest rate.

https://builtin.com/founders-entrepreneurship/data-driven-mindset
https://builtin.com/software-engineering-perspectives/tree-traversal

 DEPT. OF AIML PAGE 69

9. A high-risk borrower can be given a loan amount of up to 1X of his annual
income at a 16 percent interest rate.

10.
Question:

1. What max loan amount can be sanctioned for John?
2. What will the interest rate be?

Solution:
To deduce the conclusion, we apply forward chaining on the knowledge base. We start
from the facts which are given in the knowledge base and go through each one of them
to deduce intermediate conclusions until we are able to reach the final conclusion or
have sufficient evidence to negate the same.
John’ CS = 780 AND CS > 750 are Low Risk Borrower → John is a Low Risk
Borrower

Loan Amount for Low Risk Borrower is 4X annual income AND John’s annual
income is $100k

→ Max loan amount that can be sanctioned is $400k at a 10% interest rate.

Backward Chaining
Backward chaining is also known as a backward deduction or backward reasoning
method when using an inference engine. In this, the inference engine knows the final
decision or goal. The system starts from the goal and works backward to determine
what facts must be asserted so that the goal can be achieved.

For example, it starts directly with the conclusion (hypothesis) and validates it
by backtracking through a sequence of facts. Backward chaining can be used in
debugging, diagnostics and prescription applications.

Properties of Backward Chaining

• Backward chaining uses an up-down strategy going from top to bottom.
• The modus ponens inference rule is used as the basis for the backward chaining

process. This rule states that if both the conditional statement (p->q) and the
antecedent (p) are true, then we can infer the subsequent (q).

https://en.wikipedia.org/wiki/Modus_ponens

 DEPT. OF AIML PAGE 70

• In backward chaining, the goal is broken into sub-goals to prove the facts are
true.

• It is called a goal-driven approach, as a list of goals decides which rules are
selected and used.

• The backward chaining algorithm is used in game theory, automated theorem-
proving tools, inference engines, proof assistants and various AI applications.

• The backward-chaining method mostly used a depth-first search strategy for
proof.

Eg:
Knowledgebase:

• John is taller than Kim
• John is a boy
• Kim is a girl
• John and Kim study in the same class
• Everyone else other than John in the class is shorter than Kim

Question:

• Is John the tallest boy in class?

Now, to apply backward chaining, we start from the goal and assume that John is the
tallest boy in class. From there, we go backward through the knowledge base
comparing that assumption to each known fact to determine whether it is true that
John is the tallest boy in class or not.
Height (John) > Height (anyone in the class)
AND
John and Kim both are in the same class
AND
Height (Kim) > Height (anyone in the class except John)
AND
John is boy
SO
Height (John) > Hight(Kim)
Which aligns with the knowledge base fact. Hence the goal is proved true.

AO* algorithm – Artificial intelligence
Best-first search is what the AO* algorithm does. The AO* method divides any given
difficult problem into a smaller group of problems that are then resolved using the
AND-OR graph concept. AND OR graphs are specialized graphs that are used in
problems that can be divided into smaller problems. The AND side of the graph
represents a set of tasks that must be completed to achieve the main goal, while the
OR side of the graph represents different methods for accomplishing the same main
goal.

https://builtin.com/data-science/dominated-strategy-in-game-theory
https://builtin.com/artificial-intelligence/examples-ai-in-industry

 DEPT. OF AIML PAGE 71

In this figure, the buying of a car may be broken down into smaller problems or tasks
that can be accomplished to achieve the main goal in the above figure, which is an
example of a simple AND-OR graph. The other task is to either steal a car that will
help us accomplish the main goal or use your own money to purchase a car that will
accomplish the main goal. The AND symbol is used to indicate the AND part of the
graphs, which refers to the need that all subproblems containing the AND to be
resolved before the preceding node or issue may be finished.

Representation of Horn clauses using AND-OR graph for forward chaining

Consider the example inference rules and facts:

The corresponding AND-OR graph is:

 DEPT. OF AIML PAGE 72

MODULE-4

Limitations of Propositional logic:
o Propositional logic is a puny mechanism to express knowledge and inferencing
o We cannot represent relations like ALL, some, or none with propositional logic.

Example:
a. All the girls are intelligent.
b. Some apples are sweet.

o Propositional logic has limited expressive power.
o In propositional logic, we cannot describe statements in terms of their

properties or logical relationships.
Alternate Solutions:

Programming languauges:
The syntax and semantics of programming languages can be used to express the
reasoning. In programming language procedures/methods can be the logic and data
structures containing data will be the facts. However programming languages lack
following:

 One cannot derive facts from other facts
 Inferencing not automatic and needs to programmed for each case
 They lack expressiveness required to handle partial information
 Composionality is missing.

Natural Language libraries:
Natural language processing (NLP) is a branch of artificial intelligence (AI) that
enables computers to comprehend, generate, and manipulate human language.
Natural language processing has the ability to interrogate the data with natural
language text or voice. This is also called “language in.” Most consumers have probably
interacted with NLP without realizing it. For instance, NLP is the core technology
behind virtual assistants, such as the Oracle Digital Assistant (ODA), Siri, Cortana, or
Alexa. Ambiguity, generally used in natural language processing, can be referred as the
ability of being understood in more than one way. In simple terms, we can say that
ambiguity is the capability of being understood in more than one way. Natural
language is very ambiguous. NLP has the following types of ambiguities −
Lexical Ambiguity
The ambiguity of a single word is called lexical ambiguity. For example, treating the
word silver as a noun, an adjective, or a verb.
Syntactic Ambiguity
This kind of ambiguity occurs when a sentence is parsed in different ways. For
example, the sentence “The man saw the girl with the telescope”. It is ambiguous
whether the man saw the girl carrying a telescope or he saw her through his telescope.
Semantic Ambiguity
This kind of ambiguity occurs when the meaning of the words themselves can be
misinterpreted. In other words, semantic ambiguity happens when a sentence
contains an ambiguous word or phrase. For example, the sentence “The car hit the pole
while it was moving” is having semantic ambiguity because the interpretations can be
“The car, while moving, hit the pole” and “The car hit the pole while the pole was
moving”.
Anaphoric Ambiguity

 DEPT. OF AIML PAGE 73

This kind of ambiguity arises due to the use of anaphora entities in discourse. For
example, the horse ran up the hill. It was very steep. It soon got tired. Here, the
anaphoric reference of “it” in two situations cause ambiguity.
Pragmatic ambiguity
Such kind of ambiguity refers to the situation where the context of a phrase gives
it multiple interpretations. In simple words, we can say that pragmatic ambiguity
arises when the statement is not specific. For example, the sentence “I like you too”
can have multiple interpretations like I like you (just like you like me), I like you (just
like someone else dose).

Combining the best of formal and natural languages
Formal languages are languages that are designed by people for specific applications.
For example, the notation that mathematicians use is a formal language that is
particularly good at denoting relationships among numbers and symbols. Chemists
use a formal language to represent the chemical structure of molecules.
Elements of a natural language: Nouns,, and noun phrases that refer to objects
(squares, pits, wumpuses) and verbs and verb phrases that refer to relations among
objects (is breezy, is adjacent to, shoots). Some of these relations are functions—
relations in which there is only one “value” for a given “input.” It is easy to start listing
examples of objects, relations, and functions:
• Objects: people, houses, numbers, theories, Ronald McDonald, colors, baseball
games, wars, centuries
• Relations: these can be unary relations or properties such as red, round, bogus,
prime,
• Functions: father of, best friend, third inning of, one more than, beginning of
Eg: Identify the objects, relations, functions and properties if any in the following
examples:
“one plus two equals three”
 Objects: one, two, three; Relations: equals; Function: plus
“Squares neighboring wumpus are smelly”
 Objects: squares,Wumpus; Relations:neighbouring; Property:smelly;
“Evil King John ruled England in 1200”
 Objects: King John, England, 1200; Relation: ruled; Property:Evil

Formal languages and their ontological and epistemological
commitments.

 Propositional logic is the logic that deals with a collection of declarative

 DEPT. OF AIML PAGE 74

statements which have a truth value, true or false. Propositions are combined
with Logical Operators or Logical Connectives like Negation(¬),
Disjunction(∨), Conjunction(∧), Exclusive OR(⊕), Implication(⇒), Bi-
Conditional or Double Implication(⇔). It cannot deal with sets of entities.

 First order logic is an expression consisting of variables with a specified
domain. It consists of objects, relations and functions between the objects. It
helps analyze the scope of the subject over the predicate. There are three
quantifiers : Universal Quantifier (∀) depicts for all, Existential Quantifier (∃)
depicting there exists some and Uniqueness Quantifier (∃!) depicting exactly
one. It can deal with set of entities with the help of quantifiers.

 Temporal logic is a subfield of mathematical logic that deals with reasoning
about time and the temporal relationships between events. In artificial
intelligence, temporal logic is used as a formal language to describe and
reason about the temporal behavior of systems and processes. Temporal logic
extends classical propositional and first-order logic with constructs for
specifying temporal relationships, such as “before,” “after,” “during,” and
“until.” This allows for the expression of temporal constraints and the
modeling of temporal aspects of a system, such as its evolution over time and
the relationships between events.

 Probability is defined as the chance of happening or occurrences of an event.
Generally, the possibility of analyzing the occurrence of any event with respect
to previous data is called probability. For example, if a fair coin is tossed, what
is the chance that it lands on the head? These types of questions are answered
under probability. Probability theory uses the concept of random variables
and probability distribution to find the outcome of any situation. Probability
theory is an advanced branch of mathematics that deals with the odds and
statistics of happening an event.

 The term fuzzy refers to things that are not clear or are vague. In the real world
many times we encounter a situation when we can’t determine whether the
state is true or false, their fuzzy logic provides very valuable flexibility for
reasoning. In this way, we can consider the inaccuracies and uncertainties of
any situation. Fuzzy Logic is a form of many-valued logic in which the truth
values of variables may be any real number between 0 and 1, instead of just
the traditional values of true or false. It is used to deal with imprecise or
uncertain information and is a mathematical method for representing
vagueness and uncertainty in decision-making. Fuzzy Logic is based on the
idea that in many cases, the concept of true or false is too restrictive, and that
there are many shades of gray in between. It allows for partial truths, where a
statement can be partially true or false, rather than fully true or false.

 Ontology: the study of what there is in the world that we should know about,
and Epistemology: the study of how we should get to know the things in the
world. Obviously, this was long before AI was a thing, and they were merely
concerned with the structure of knowledge and its acquisition by humans. when
it comes to creating AI we should take an epistemological approach: how does
the only working truly intelligent system (the human brain) models the world,
innately or by learning. This is in contrast with the ontological approach:
focusing on organizing what we know in data ontologies and then trying to
instill those in computers.

 DEPT. OF AIML PAGE 75

Syntax of First-Order logic:
The syntax of FOL determines which collection of symbols is a logical expression in
first-order logic. The basic syntactic elements of first-order logic are symbols. We write
statements in short-hand notation in FOL.
Basic Elements of First-order logic:
Syntax of First Order Logic
 The syntax of First Order Logic is written using Backnaus Normal Form.

Atomic sentences:

o Atomic sentences are the most basic sentences of first-order logic. These
sentences are formed from a predicate symbol followed by a parenthesis with a
sequence of terms.

o We can represent atomic sentences as
Predicate (term1, term2,, term n).

Example: Ravi and Ajay are brothers: => Brothers(Ravi, Ajay).
 Chinky is a cat: => cat (Chinky).
Complex Sentences:

o Complex sentences are made by combining atomic sentences using connectives.
First-order logic statements can be divided into two parts:

o Subject: Subject is the main part of the statement.

 DEPT. OF AIML PAGE 76

o Predicate: A predicate can be defined as a relation, which binds two atoms
together in a statement.

Consider the statement: "x is an integer.", it consists of two parts, the first part x is the
subject of the statement and second part "is an integer," is known as a predicate.

Quantifiers in First-order logic:

o A quantifier is a language element which generates quantification, and
quantification specifies the quantity of specimen in the universe of discourse.

o These are the symbols that permit to determine or identify the range and scope
of the variable in the logical expression. There are two types of quantifier:

a. Universal Quantifier, (for all, everyone, everything)
b. Existential quantifier, (for some, at least one).

Universal Quantifier:
Universal quantifier is a symbol of logical representation, which specifies that the
statement within its range is true for everything or every instance of a particular thing.
The Universal quantifier is represented by a symbol ∀, which resembles an inverted A.
If x is a variable, then ∀x is read as:

o For all x
o For each x
o For every x.

Example:
All man drink coffee.
Let a variable x which refers to a cat so all x can be represented in UOD as below:

 DEPT. OF AIML PAGE 77

∀x man(x) → drink (x, coffee).
It will be read as: There are all x where x is a man who drink coffee.
Existential Quantifier:
Existential quantifiers are the type of quantifiers, which express that the statement
within its scope is true for at least one instance of something.
It is denoted by the logical operator ∃, which resembles as inverted E. When it is used
with a predicate variable then it is called as an existential quantifier.
Note: In Existential quantifier we always use AND or Conjunction symbol (∧).
If x is a variable, then existential quantifier will be ∃x or ∃(x). And it will be read as:

o There exists a 'x.'
o For some 'x.'
o For at least one 'x.'

Example:
Some boys are intelligent.

∃x: boys(x) ∧ intelligent(x)
It will be read as: There are some x where x is a boy who is intelligent.

Some Examples of FOL using quantifier:
1. All birds fly.
In this question the predicate is "fly(bird)."
And since there are all birds who fly so it will be represented as follows.
 ∀x bird(x) →fly(x).

2. Every man respects his parent.
In this question, the predicate is "respect(x, y)," where x=man, and y= parent.
Since there is every man so will use ∀, and it will be represented as follows:
 ∀x man(x) → respects (x, parent).

3. Some boys play cricket.

 DEPT. OF AIML PAGE 78

In this question, the predicate is "play(x, y)," where x= boys, and y= game. Since
there are some boys so we will use ∃, and it will be represented as:
 ∃x boys(x) → play(x, cricket).

4. Not all students like both Mathematics and Science.
In this question, the predicate is "like(x, y)," where x= student, and y= subject.
Since there are not all students, so we will use ∀ with negation, so following
representation for this:
 ¬∀ (x) [student(x) → like(x, Mathematics) ∧ like(x, Science)].

5. Only one student failed in Mathematics.
In this question, the predicate is "failed(x, y)," where x= student, and y= subject.
Since there is only one student who failed in Mathematics, so we will use following
representation for this:
 ∃(x) [student(x) → failed (x, Mathematics) ∧∀ (y) [¬(x==y) ∧ student(y) →
¬failed (x, Mathematics)].

Kinship domain

Symbols and Interpretations
The symbols of the language 0,1, add, prime and so on—have very suggestive names.
When we interpret sentences of this language over the domain N, for example, it is
clear for which elements of the domain prime “should” be true, and for which it
“should” be false. But let us consider a first order language that has only two unary
predicate symbols, fancy and tall, then it depends on the domain to define the value.
It is undefined for the domain of natural numbers.
Symbols stand for objects, relations and functions. There are 3 types of symbols:

 DEPT. OF AIML PAGE 79

❑ Constant symbols representing objects. Eg: John, Richard
❑ Predicate symbols representing relations. Eg: Brother, OnHead
❑ Function symbols representing functions. Eg: LeftLeg

Each model includes an interpretation that specifies exactly which objects, relations
and functions are referred to by the constant, predicate, and function symbols.
Logician calls it as Intended Interpretation

Nested Quantifiers
Nested quantifiers are quantifiers that occur within the scope of other quantifiers.
Example: ∀x∃yP(x, y). Quantifier order matters! ∀x∃yP(x, y) ≠ ∃y∀xP(x, y)
Let L(x, y) be the statement “x loves y,” where the domain for both x and y consists of
all people in the world. Use quantifiers to express each of these statements.
a) Everybody loves Jerry. ∀x L(x, Jerry)
b) Everybody loves somebody. ∀x∃yL(x, y)
c) There is somebody whom everybody loves. ∃y∀xL(x, y)
d) Nobody loves everybody. ∀x∃y¬L(x, y) or ¬∃x∀yL(x, y)
e) Everyone loves himself or herself ∀xL(x, x)

Connections between ∀ and ∃
The two quantifiers are actually intimately connected with each other, through
negation. Asserting that everyone dislikes parsnips is the same as asserting there does
not exist someone who likes them, and vice versa:

∀ x ￢Likes(x, Parsnips) is equivalent to ￢∃ x Likes(x, Parsnips) . We can go one step
further: “Everyone likes ice cream” means that there is no one who does not like ice

cream: ∀ x Likes(x, IceCream) is equivalent to ￢∃ x ￢Likes(x, IceCream) .
Equality

 We can use the equality symbol to signify that two terms refer to the same
object. For example, Father (John)=Henry says that the object referred to by Father
(John) and the object referred to by Henry are the same. The equality symbol can be
used to state facts about a given function, as we just did for the Father symbol. It can
also be used with negation to insist that two terms are not the same object. To say that
Richard has at least two brothers, we would write ∃ x, y Brother (x,Richard) ∧ Brother

(y,Richard) ∧￢(x=y) .

USING FIRST ORDER LOGIC
 Sentences are added to a knowledge base using TELL, exactly as in

propositional logic. Such sentences are called assertions. For example, we can assert
that John is a king, Richard is a person, and all kings are persons:

TELL(KB, King(John))
TELL(KB, Person(Richard))

 DEPT. OF AIML PAGE 80

TELL(KB, ∀ x King(x) ⇒ Person(x)) We can ask questions of the knowledge base
using ASK.

For example, ASK(KB, King(John)) returns true. Questions asked with ASK are
called queries or goals If we want to know what value of x makes the sentence true, we
will need a different function, ASKVARS, which we call with ASKVARS(KB, Person(x))
and which yields a stream of answers. In this case there will be two answers: {x/John}
and {x/Richard}. Such an answer is called a substitution or binding list.
The kinship domain

The first example we consider is the domain of family relationships, or kinship.
This domain includes facts such as “Elizabeth is the mother of Charles” and “Charles
is the father of William” and rules such as “One’s grandmother is the mother of one’s
parent.” Clearly, the objects in our domain are people. We have two unary predicates,
Male and Female. Kinship relations—parenthood, brotherhood, marriage, and so on—
are represented by binary predicates: Parent, Sibling, Brother , Sister , Child ,
Daughter, Son, Spouse, Wife, Husband, Grandparent , Grandchild , Cousin, Aunt, and
Uncle. We use functions for Mother and Father , because every person has exactly one
of each of these.

For example, one’s mother is one’s female parent:
∀ m, c Mother (c)=m ⇔ Female(m) ∧ Parent(m, c) .

One’s husband is one’s male spouse:
∀ w, h Husband(h,w) ⇔ Male(h) ∧ Spouse(h,w) .

Male and female are disjoint categories:

∀ x Male(x) ⇔ ￢Female(x) . Parent and child are inverse relations: ∀ p,

c Parent(p, c) ⇔ Child (c, p) .
 A grandparent is a parent of one’s parent:

∀ g, c Grandparent (g, c) ⇔ ∃p Parent(g, p) ∧ Parent(p, c) . A sibling is
another child of one’s parents: ∀ x, y

Sibling(x, y) ⇔ x _= y ∧ ∃p Parent(p, x) ∧ Parent(p, y) . Each of these
sentences can be viewed as an axiom of the kinship domain. Axioms are
commonly associated with purely mathematical domains. Our kinship axioms
are also definitions; they have the form ∀ x, y P(x, y) ⇔ The axioms define
the Mother function and the Husband, Male, Parent, Grandparent, and Sibling
predicates in terms of other predicates. For example, consider the assertion that
siblinghood is symmetric: ∀ x, y Sibling(x, y) ⇔ Sibling(y, x) .

Natural numbers in first-order logic
The natural numbers can be described in first-order logic. The language of natural
numbers has

 a single constant 0, defined by predicate NatNum(0)
 a function Successor, S(n) which defines next number after n in the series of

natural number
 The successor is expressed as a quantifier:
 ∀n, NatNum(n) ⇒ NatNum(S(n))

∀n, 0 ≠ S(n)
 Two natural numbers cannot have same successor
 ∀m, n m ≠ n ⇒ S(m) ≠ S(n)
 + is a function defined on two natural numbers and equality is defined between 2

natural numbers using FOL:

 DEPT. OF AIML PAGE 81

 ∀m, n NatNum(m) ∧ NatNum(n) ⇒ +(S(m), n) = S(+(m, n))

▪ 0 is an arithmetic identity as
▪ ∀m, NatNum(m) ⇒ +(0, m) = m

A set is a collection of objects; any one of the objects in a set is called a member or
an element of the set.
The basic statement in set theory is element inclusion: an element a is included in
some set S. Formally written as:

If an element is not included, we write:

Statements are either true or false, depending on the context. For example, given the
above sets, the first statement is true, whereas the second is false. If a statement S is
true in a given context C, we say the statement is valid in C. Formally, we write this as:

If the statement is not valid in that context, we write:

The operators to compose new sets out of existing ones are:

1. A special set is the empty set, which contains no elements at all:
2. Union: create a set S containing all elements from A, from B, or from both.

Formally:
3. Intersection: create a set S containing all elements that are both in A and in B.

Formally:
4. Exclusion: create a set S from the elements of A that are not in B.

Formally:
These sets can be interpreted as quantified statements:

Subsets:
∀ s1, s2 s1 ⊆ s2 ⇔ (∀ x x ∈ s1 ⇒ x ∈ s2) .

Equality of two sets:
∀ s1, s2 (s1 = s2) ⇔ (s1 ⊆ s2 ∧ s2 ⊆ s1) .

List vs Sets
Lists are similar to sets. The differences are that lists are ordered and the same element
can appear more than once in a list. We can use the vocabulary of Lisp for lists:
 Nil is the constant list with no elements;
Cons, Append, First, and Rest are functions; and
Find is the predicate that does for lists what Member does for sets.
List? is a predicate that is true only of lists. elements,

 DEPT. OF AIML PAGE 82

First Order Logic with Wumpus World
 The wumpus agent receives a percept vector with five elements. The

corresponding firstorder sentence stored in the knowledge base must include
both the percept and the time at which it occurred; otherwise, the agent will get
confused about when it saw what.

 We use integers for time steps. A typical percept sentence would be Percept
([Stench, Breeze, Glitter , None, None], 5) . Here, Percept is a binary predicate,
and Stench and so on are constants placed in a list.

 The actions in the wumpus world can be represented by logical terms:
Turn(Right), Turn(Left), Forward , Shoot , Grab, Climb .

 To determine which is best, the agent program executes the query ASKVARS(∃
a BestAction(a, 5)) , which returns a binding list such as {a/Grab}.

 The agent program can then return Grab as the action to take.
 The raw percept data implies certain facts about the current state. For example:

∀t,s,g,m,c Percept ([s,Breeze,g,m,c],t) ⇒ Breeze(t) , ∀t,s,b,m,c Percept
([s,b,Glitter,m,c],t) ⇒ Glitter (t) These rules exhibit a trivial form of the
reasoning process called perception.

 Simple “reflex” behavior can also be implemented by quantified implication
sentences. For example, we have ∀ t Glitter (t) ⇒ BestAction(Grab, t) .

 Given the percept and rules from the preceding paragraphs, this would yield the
desired conclusion BestAction(Grab, 5)—that is, Grab is the right thing to do.

 For example, if the agent is at a square and perceives a breeze, then that square
is breezy: ∀ s, t At(Agent, s, t) ∧ Breeze(t) ⇒ Breezy(s) . It is useful to know that
a square is breezy because we know that the pits cannot move about. Notice that
Breezy has no time argument.

 Having discovered which places are breezy (or smelly) and, very important, not
breezy (or not smelly), the agent can deduce where the pits are (and where the
wumpus is). first-order logic just needs one axiom: ∀ s Breezy(s) ⇔ ∃r Adjacent
(r, s) ∧ Pit(r) .

Inference in First-Order Logic
 Inference in First-Order Logic is used to deduce new facts or sentences from

existing sentences. Before understanding the FOL inference rule, let's
understand some basic terminologies used in FOL.

 Substitution is a fundamental operation performed on terms and formulas. It
occurs in all inference systems in first-order logic. The substitution is complex
in the presence of quantifiers in FOL. If we write F[a/x], so it refers to substitute
a constant "a" in place of variable "x".

 Equality-First-Order logic does not only use predicate and terms for making
atomic sentences but also uses another way, which is equality in FOL. For this,
we can use equality symbols which specify that the two terms refer to the same
object.

 Example: Brother (John) = Smith.
 As in the above example, the object referred by the Brother (John) is similar to

the object referred by Smith. The equality symbol can also be used with
negation to represent that two terms are not the same objects.

 Example: ￢(x=y) which is equivalent to x ≠y.

 DEPT. OF AIML PAGE 83

 FOL inference rules for quantifier:

As propositional logic we also have inference rules in first-order logic, so following are
some basic inference rules in FOL:

o Universal Instantiation
o Existential Instantiation

Universal Instantiation:
o Universal instantiation is also called as universal elimination or UI is a valid

inference rule. It can be applied multiple times to add new sentences.
o The new KB is logically equivalent to the previous KB.
o As per UI, we can infer any sentence obtained by substituting a ground term for

the variable.
o The UI rule state that we can infer any sentence by substituting a ground term

v with g in the universe of discourse.

o
Example:1.

o IF "Every person like ice-cream"=> we can infer
"John likes ice-cream" => P(c)
Example: 2.

o "All kings who are greedy are Evil." So let our knowledge base contains this
detail as in the form of FOL:

o ∀x king(x) ∧ greedy (x) → Evil (x),
So from this information, we can infer any of the following statements using Universal
Instantiation:

o King(John) ∧ Greedy (John) → Evil (John),
o King(Richard) ∧ Greedy (Richard) → Evil (Richard),
o King(Father(John)) ∧ Greedy (Father(John)) → Evil (Father(John)),

Existential Instantiation:
o Existential instantiation is also called as Existential Elimination, which is a

valid inference rule in first-order logic.
o It can be applied only once to replace the existential sentence.
o The new KB is not logically equivalent to old KB, but it will be satisfiable if old

KB was satisfiable.
o Represented as:

Example:
From the given sentence: ∃x Crown(x) ∧ OnHead(x, John),

So we can infer: Crown(K) ∧ OnHead(K, John), as long as K does not appear in the
knowledge base.

o The above used K is a constant symbol, which is called Skolem constant.
o The Existential instantiation is a special case of Skolemization process.

 DEPT. OF AIML PAGE 84

Generalized Modus Ponens Rule:
For the inference process in FOL, we have a single inference rule which is called
Generalized Modus Ponens. It is lifted version of Modus ponens.
Generalized Modus Ponens can be summarized as, " P implies Q and P is asserted to
be true, therefore Q must be True."
According to Modus Ponens, for atomic sentences pi, pi', q. Where there is a
substitution θ such that SUBST (θ, pi',) = SUBST(θ, pi), it can be represented as:

Example:
We will use this rule for Kings are evil, so we will find some x such that x is king, and
x is greedy so we can infer that x is evil.

1. p1' is king(John) p1 is king(x)
2. p2' is Greedy(y) p2 is Greedy(x)
3. θ is {x/John, y/John} q is evil(x)
4. SUBST(θ,q).

Unification
o Unification is a process of making two different logical atomic expressions

identical by finding a substitution. Unification depends on the substitution
process.

o It takes two literals as input and makes them identical using substitution.
o Let Ψ1 and Ψ2 be two atomic sentences and 𝜎 be a unifier such that, Ψ1𝜎 = Ψ2𝜎,

then it can be expressed as UNIFY(Ψ1, Ψ2).
o Example: Find the MGU for Unify{King(x), King(John)}

Let Ψ1 = King(x), Ψ2 = King(John),
Substitution θ = {John/x} is a unifier for these atoms and applying this substitution,
and both expressions will be identical.

o The UNIFY algorithm is used for unification, which takes two atomic sentences
and returns a unifier for those sentences (If any exist).

o Unification is a key component of all first-order inference algorithms.
o It returns fail if the expressions do not match with each other.
o The substitution variables are called Most General Unifier or MGU.

Conditions for Unification:
Following are some basic conditions for unification:

o Predicate symbol must be same, atoms or expression with different predicate
symbol can never be unified.

o Number of Arguments in both expressions must be identical.
o Unification will fail if there are two similar variables present in the same

expression.

Unification Algorithm:
Algorithm: Unify(Ψ1, Ψ2)

Step. 1: If Ψ1 or Ψ2 is a variable or constant, then:
 a) If Ψ1 or Ψ2 are identical, then return NIL.
 b) Else if Ψ1is a variable,
 a. then if Ψ1 occurs in Ψ2, then return FAILURE
 b. Else return { (Ψ2/ Ψ1)}.

 DEPT. OF AIML PAGE 85

 c) Else if Ψ2 is a variable,
 a. If Ψ2 occurs in Ψ1 then return FAILURE,
 b. Else return {(Ψ1/ Ψ2)}.
 d) Else return FAILURE.
Step.2: If the initial Predicate symbol in Ψ1 and Ψ2 are not same, then return
FAILURE.
Step. 3: IF Ψ1 and Ψ2 have a different number of arguments, then return FAILURE.
Step. 4: Set Substitution set(SUBST) to NIL.
Step. 5: For i=1 to the number of elements in Ψ1.
 a) Call Unify function with the ith element of Ψ1 and ith element of Ψ2, and
put the result into S.
 b) If S = failure then returns Failure
 c) If S ≠ NIL then do,
 a. Apply S to the remainder of both L1 and L2.
 b. SUBST= APPEND(S, SUBST).
Step.6: Return SUBST.

For each pair of the following atomic sentences find the most general unifier (If exist).
1. Find the MGU of {p(f(a), g(Y)) and p(X, X)}
 Sol: S0 => Here, Ψ1 = p(f(a), g(Y)), and Ψ2 = p(X, X)
 SUBST θ= {f(a) / X}
 S1 => Ψ1 = p(f(a), g(Y)), and Ψ2 = p(f(a), f(a))
 SUBST θ= {f(a) / g(y)}, Unification failed.
Unification is not possible for these expressions.

2. Find the MGU of {p(b, X, f(g(Z))) and p(Z, f(Y), f(Y))}
Here, Ψ1 = p(b, X, f(g(Z))) , and Ψ2 = p(Z, f(Y), f(Y))
S0 => { p(b, X, f(g(Z))); p(Z, f(Y), f(Y))}
SUBST θ={b/Z}
S1 => { p(b, X, f(g(b))); p(b, f(Y), f(Y))}
SUBST θ={f(Y) /X}
S2 => { p(b, f(Y), f(g(b))); p(b, f(Y), f(Y))}
SUBST θ= {g(b) /Y}
S2 => { p(b, f(g(b)), f(g(b)); p(b, f(g(b)), f(g(b))} Unified Successfully.
And Unifier = { b/Z, f(Y) /X , g(b) /Y}.

3. Find the MGU of {p (X, X), and p (Z, f(Z))}
Here, Ψ1 = {p (X, X), and Ψ2 = p (Z, f(Z))
S0 => {p (X, X), p (Z, f(Z))}
SUBST θ= {X/Z}
 S1 => {p (Z, Z), p (Z, f(Z))}
SUBST θ= {f(Z) / Z}, Unification Failed.

4. UNIFY(knows(Richard, x), knows(Richard, John))
Here, Ψ1 = knows(Richard, x), and Ψ2 = knows(Richard, John)
S0 => { knows(Richard, x); knows(Richard, John)}
SUBST θ= {John/x}
S1 => { knows(Richard, John); knows(Richard, John)}, Successfully Unified.
Unifier: {John/x}.

 DEPT. OF AIML PAGE 86

Subsumption Lattice
It is a structure created with most generic unifiers at the top and specific at the bottom.
It helps to answer queries efficiently. Each bottom level is derived by applying single
substitution on the top level. Eg:

Subsitute y/Richard to get left child, x/IBM to get right child. Later applying the same
yields common child.
Eg:

Inference Engine using FOL
The inference engine is the component of the intelligent system in artificial
intelligence, which applies logical rules to the knowledge base to infer new information
from known facts. The first inference engine was part of the expert system. Inference
engine commonly proceeds in two modes, which are:
a. Forward chaining
b. Backward chaining
Horn Clause and Definite clause:
Horn clause and definite clause are the forms of sentences, which enables knowledge
base to use a more restricted and efficient inference algorithm. Logical inference
algorithms use forward and backward chaining approaches, which require KB in the
form of the first-order definite clause.
Definite clause: A clause which is a disjunction of literals with exactly one positive
literal is known as a definite clause or strict horn clause.
Horn clause: A clause which is a disjunction of literals with at most one positive
literal is known as horn clause. Hence all the definite clauses are horn clauses.
Example: (¬ p V ¬ q V k). It has only one positive literal k.
It is equivalent to p ∧ q → k.

 DEPT. OF AIML PAGE 87

Forward Chaining
Forward chaining is also known as a forward deduction or forward reasoning method
when using an inference engine. Forward chaining is a form of reasoning which start
with atomic sentences in the knowledge base and applies inference rules (Modus
Ponens) in the forward direction to extract more data until a goal is reached.
The Forward-chaining algorithm starts from known facts, triggers all rules whose
premises are satisfied, and add their conclusion to the known facts. This process
repeats until the problem is solved.
Example:
"As per the law, it is a crime for an American to sell weapons to hostile nations. Country
A, an enemy of America, has some missiles, and all the missiles were sold to it by
Robert, who is an American citizen."
Prove that "Robert is criminal."
To solve the above problem, first, we will convert all the above facts into first-order
definite clauses, and then we will use a forward-chaining algorithm to reach the goal.
Facts Conversion into FOL:

o It is a crime for an American to sell weapons to hostile nations. (Let's say p, q,
and r are variables)
American (p) ∧ weapon(q) ∧ sells (p, q, r) ∧ hostile(r) → Criminal(p) ...(1)

o Country A has some missiles. ?p Owns(A, p) ∧ Missile(p). It can be written in
two definite clauses by using Existential Instantiation, introducing new
Constant T1.
Owns(A, T1) (2)
Missile(T1) (3)

o All of the missiles were sold to country A by Robert.
?p Missiles(p) ∧ Owns (A, p) → Sells (Robert, p, A) (4)

o Missiles are weapons.
Missile(p) → Weapons (p) (5)

o Enemy of America is known as hostile.
Enemy(p, America) →Hostile(p) (6)

o Country A is an enemy of America.
Enemy (A, America) (7)

o Robert is American
American(Robert). (8)

Forward chaining proof:
Step-1:
In the first step we will start with the known facts and will choose the sentences which
do not have implications, such as: American(Robert), Enemy(A, America), Owns(A,
T1), and Missile(T1). All these facts will be represented as below.

Step-2:
At the second step, we will see those facts which infer from available facts and with
satisfied premises.
Rule-(1) does not satisfy premises, so it will not be added in the first iteration.
Rule-(2) and (3) are already added.
Rule-(4) satisfy with the substitution {p/T1}, so Sells (Robert, T1, A) is added, which
infers from the conjunction of Rule (2) and (3).

 DEPT. OF AIML PAGE 88

Rule-(6) is satisfied with the substitution(p/A), so Hostile(A) is added and which infers
from Rule-(7).

Step-3:
At step-3, as we can check Rule-(1) is satisfied with the substitution {p/Robert, q/T1,
r/A}, so we can add Criminal(Robert) which infers all the available facts. And hence
we reached our goal statement.

Hence it is proved that Robert is Criminal using forward chaining approach.

Backward Chaining:
Backward-chaining is also known as a backward deduction or backward reasoning
method when using an inference engine. A backward chaining algorithm is a form of
reasoning, which starts with the goal and works backward, chaining through rules to
find known facts that support the goal.
Example:
In backward-chaining, we will use the same above example, and will rewrite all the
rules.

o American (p) ∧ weapon(q) ∧ sells (p, q, r) ∧ hostile(r) → Criminal(p) ...(1)
Owns(A, T1) (2)

o Missile(T1)
o ?p Missiles(p) ∧ Owns (A, p) → Sells (Robert, p, A) (4)
o Missile(p) → Weapons (p) (5)
o Enemy(p, America) →Hostile(p) (6)
o Enemy (A, America) (7)
o American(Robert). (8)

 DEPT. OF AIML PAGE 89

Backward-Chaining proof:
In Backward chaining, we will start with our goal predicate, which is Criminal(Robert),
and then infer further rules.
Step-1:
At the first step, we will take the goal fact. And from the goal fact, we will infer other
facts, and at last, we will prove those facts true. So our goal fact is "Robert is Criminal,"
so following is the predicate of it.

Step-2:
At the second step, we will infer other facts form goal fact which satisfies the rules. So
as we can see in Rule-1, the goal predicate Criminal (Robert) is present with
substitution {Robert/P}. So we will add all the conjunctive facts below the first level
and will replace p with Robert.
Here we can see American (Robert) is a fact, so it is proved here.

Step-3:t At step-3, we will extract further fact Missile(q) which infer from Weapon(q),
as it satisfies Rule-(5). Weapon (q) is also true with the substitution of a constant T1 at
q.

Step-4:

 DEPT. OF AIML PAGE 90

At step-4, we can infer facts Missile(T1) and Owns(A, T1) form Sells(Robert, T1, r)
which satisfies the Rule- 4, with the substitution of A in place of r. So these two
statements are proved here.

Step-5:
At step-5, we can infer the fact Enemy(A, America) from Hostile(A) which satisfies
Rule- 6. And hence all the statements are proved true using backward chaining.

Resolution in FOL
Resolution is a theorem proving technique that proceeds by building refutation proofs,
i.e., proofs by contradictions. It was invented by a Mathematician John Alan Robinson
in the year 1965. Resolution is used, if there are various statements are given, and we
need to prove a conclusion of those statements. Unification is a key concept in proofs
by resolutions. Resolution is a single inference rule which can efficiently operate on
the conjunctive normal form or clausal form.

 DEPT. OF AIML PAGE 91

Clause: Disjunction of literals (an atomic sentence) is called a clause. It is also known
as a unit clause.
Conjunctive Normal Form: A sentence represented as a conjunction of clauses is said
to be conjunctive normal form or CNF.

The resolution inference rule:
The resolution rule for first-order logic is simply a lifted version of the propositional
rule. Resolution can resolve two clauses if they contain complementary literals, which
are assumed to be standardized apart so that they share no variables.

Where li and mj are complementary literals.
This rule is also called the binary resolution rule because it only resolves exactly two
literals.
Example:
We can resolve two clauses which are given below:

[Animal (g(x) V Loves (f(x), x)] and [￢ Loves(a, b) V ￢Kills(a, b)]

Where two complimentary literals are: Loves (f(x), x) and ￢ Loves (a, b) These literals
can be unified with unifier θ= [a/f(x), and b/x] , and it will generate a resolvent clause:

[Animal (g(x) V ￢ Kills(f(x), x)].

Steps for Resolution:

1. Conversion of facts into first-order logic.
2. Convert FOL statements into CNF
3. Negate the statement which needs to prove (proof by contradiction)
4. Draw resolution graph (unification).

To better understand all the above steps, we will take an example in which we will
apply resolution.
Example:
a. John likes all kind of food.

b. Apple and vegetable are food
c. Anything anyone eats and not killed is food.
d. Anil eats peanuts and still alive
e. Harry eats everything that Anil eats.

Prove by resolution that:
f. John likes peanuts.

Step-1: Conversion of Facts into FOL
In the first step we will convert all the given statements into its first order logic.

 DEPT. OF AIML PAGE 92

Step-2: Conversion of FOL into CNF
In First order logic resolution, it is required to convert the FOL into CNF as CNF form
makes easier for resolution proofs.

o Eliminate all implication (→) and rewrite
a. ∀x ¬ food(x) V likes(John, x)
b. food(Apple) Λ food(vegetables)
c. ∀x ∀y ¬ [eats(x, y) Λ ¬ killed(x)] V food(y)
d. eats (Anil, Peanuts) Λ alive(Anil)
e. ∀x ¬ eats(Anil, x) V eats(Harry, x)
f. ∀x¬ [¬ killed(x)] V alive(x)
g. ∀x ¬ alive(x) V ¬ killed(x)
h. likes(John, Peanuts).

o Move negation (¬)inwards and rewrite
a. ∀x ¬ food(x) V likes(John, x)
b. food(Apple) Λ food(vegetables)
c. ∀x ∀y ¬ eats(x, y) V killed(x) V food(y)
d. eats (Anil, Peanuts) Λ alive(Anil)
e. ∀x ¬ eats(Anil, x) V eats(Harry, x)
f. ∀x ¬killed(x)] V alive(x)
g. ∀x ¬ alive(x) V ¬ killed(x)
h. likes(John, Peanuts).

o Rename variables or standardize variables
a. ∀x ¬ food(x) V likes(John, x)
b. food(Apple) Λ food(vegetables)
c. ∀y ∀z ¬ eats(y, z) V killed(y) V food(z)
d. eats (Anil, Peanuts) Λ alive(Anil)
e. ∀w¬ eats(Anil, w) V eats(Harry, w)
f. ∀g ¬killed(g)] V alive(g)
g. ∀k ¬ alive(k) V ¬ killed(k)
h. likes(John, Peanuts).

o Eliminate existential instantiation quantifier by elimination.
In this step, we will eliminate existential quantifier ∃, and this process is known
as Skolemization. But in this example problem since there is no existential
quantifier so all the statements will remain same in this step.

 DEPT. OF AIML PAGE 93

o Drop Universal quantifiers.
In this step we will drop all universal quantifier since all the statements are
not implicitly quantified so we don't need it.

a. ¬ food(x) V likes(John, x)
b. food(Apple)
c. food(vegetables)
d. ¬ eats(y, z) V killed(y) V food(z)
e. eats (Anil, Peanuts)
f. alive(Anil)
g. ¬ eats(Anil, w) V eats(Harry, w)
h. killed(g) V alive(g)
i. ¬ alive(k) V ¬ killed(k)
j. likes(John, Peanuts).

o Distribute conjunction ∧ over disjunction ¬.
This step will not make any change in this problem.

o
Step-3: Negate the statement to be proved
In this statement, we will apply negation to the conclusion statements, which will be
written as ¬likes(John, Peanuts)

Step-4: Draw Resolution graph: Now in this step, we will solve the problem by
resolution tree using substitution. For the above problem, it will be given as follows:

Hence the negation of the conclusion has been proved as a complete contradiction with
the given set of statements.
Explanation of Resolution graph:

o In the first step of resolution graph, ¬likes(John, Peanuts) , and likes(John,
x) get resolved(canceled) by substitution of {Peanuts/x}, and we are left with ¬
food(Peanuts)

 DEPT. OF AIML PAGE 94

o In the second step of the resolution graph, ¬ food(Peanuts) , and food(z) get
resolved (canceled) by substitution of { Peanuts/z}, and we are left with ¬
eats(y, Peanuts) V killed(y) .

o In the third step of the resolution graph, ¬ eats(y, Peanuts) and eats (Anil,
Peanuts) get resolved by substitution {Anil/y}, and we are left
with Killed(Anil) .

o In the fourth step of the resolution graph, Killed(Anil) and ¬ killed(k) get
resolve by substitution {Anil/k}, and we are left with ¬ alive(Anil) .

o In the last step of the resolution graph ¬ alive(Anil) and alive(Anil) get
resolved.

 DEPT. OF AIML PAGE 95

MODULE-5

Acting Under uncertainty
 A logical agent believes a sentence to be either true or false. Probabilistic agents are

those that have a degree of belief about the validity of a given sentence. And the belief
could be ranging from 0 to 1.

 Uncertainty can arise because of incompleteness and incorrectness in the agents
understanding of the properties of the environment. when we are talking of handling
uncertainty, one needs to recall that if I am using first order logic to cope with complex
domains, like medical diagnosis or criminal investigation or some form of methods
and techniques to figure out false in a system.

 Example: diagnosing a toothache – Diagnosis: classic example of a problem with
inherent uncertainty – Attempt 1: Toothache ⇒ HasCavity • But: not all toothaches are
caused by cavities. Not true! – Attempt 2: Toothache ⇒ Cavity ∨ GumDisease ∨Abscess
∨ etc ∨ etc • To be true: would need nearly unlimited list of options...some unknown.
– Attempt 3: Try make causal: Cavity ⇒ Toothache • Nope: not all cavities cause
toothaches!

 There would be 3 main reasons why such first order logic systems would fail. One, we
call it laziness, this is about too much work involved to create the complete set of
antecedents or consequence, needed to ensure an exception less rule. And it is too hard
to use the enormous rules that result out of this. So, if you are looking for completely
covering one of these domains, then it would be too much of task either to list the
complete set of incidents or consequence for a given rule or it would be even hard to
really get all the rules in the system. Number 2 is about certain ignorance, which is
referred to as the theoretical ignorance, it is about the expertise of the area, which may
not be sufficient to have complete theory for the domain that is being worked with.
And finally we have what is called the practical ignorance. Suppose we know all the
rules yet we may be uncertain about particular cases, because all the necessary tests or
evaluations may have not been or possibly cannot be done for that particular case.

 So agent’s knowledge under such a situation can at best provide only a degree of belief
in the relevant sentences. And that is why every sentence in under such a scenario
cannot evaluate to being just true or false. We have to associate to each sentence that
the knowledge of the agent comprises of to a degree of belief. This is not only true for
the medical domain that I have been emphasizing. It is also true for most other
judgmental domains like law, business, design, automobile repair, gardening, so on
and so forth. So dealing with degrees of belief is what is done through the probability
theory, which assigns a numerical degree of belief between 0 and 1 to the sentences.

 Probability provides a way of summarizing the uncertainty. And one needs to realize
that this uncertainty comes from our laziness and ignorance. Laziness here refers to
our inability to completely quantify the domain and ignorance their reference to either
our theoretical ignorance of the domain or the practical ignorance when I am working
with certain cases. So to make choices that is to make rational decisions, an agent must
first have preferences between the possible outcomes of the plans and this is where we
use what is called the utility theory.

 The utility theory is used to represent and reason with preferences. Here preference
refers to options choices, and other alternatives of what is more preferred, outcomes
are completely specified state and the utility theory is about figuring out which is more
useful, or in terms we say the quality of being useful.

 DEPT. OF AIML PAGE 96

Basic Notations of Probability
Probability: Probability can be defined as a chance that an uncertain event will
occur. It is the numerical measure of the likelihood that an event will occur. The value
of probability always remains between 0 and 1 that represent ideal uncertainties.
0 ≤ P(A) ≤ 1, where P(A) is the probability of an event A.
P(A) = 0, indicates total uncertainty in an event A.
P(A) =1, indicates total certainty in an event A.

 We can find the probability of an uncertain event by using the below formula.

o P(¬A) = probability of a not happening event.
o P(¬A) + P(A) = 1.

Event: Each possible outcome of a variable is called an event. An event A is any subset
of Ω – Allows us to group possible worlds, e.g., “doubles rolled with dice” – P(A) =
Σ{ω∈A} P(ω) – e.g., P(doubles rolled) = P (1,1) + P (2,2) + ... + P (6,6)
Sample space: The collection of all possible events is called sample space. set Ω = all
possible worlds that might exist – e.g., after two dice roll: 36 possible worlds (assuming
distinguishable dice) – Possible worlds are exclusive and mutually exhaustive. Only
one can be true (the actual world); at least one must be true – ω ∈ Ω is a sample point
(possible world)
probability space or probability model is a sample space with an assignment
P(ω) for every ω∈ Ω such that: – 0 ≤ P(ω) ≤ 1 – Σω P(ω) = 1 – e.g. for die roll: P(1,1) =
P(1,2) = P(1,3) =... = P(6,6) = 1/36
Random variables: Random variables are used to represent the events and objects
in the real world.
A proposition in the probabilistic world is then simply an assertion that some event
(describing a set of possible worlds) is true. – θ=“doubles rolled” à asserts event
“doubles” is true à asserts {[1,1] ∨ [2,2] ∨...∨ [6,6]} is true. – Propositions can be
compound: θ=(doubles ∧(total>4)) – P(θ) = Σω∈θ P(ω) à probability of proposition is
sum of its parts
Prior probability: The prior probability of an event is probability computed before
observing new information.
Posterior Probability: The probability that is calculated after all evidence or
information has taken into account. It is a combination of prior probability and new
information.

 DEPT. OF AIML PAGE 97

Conditional probability: Conditional probability is a probability of occurring an
event when another event has already happened.
Let's suppose, we want to calculate the event A when event B has already occurred,
"the probability of A under the conditions of B", it can be written as:

Where P(A⋀B)= Joint probability of a and B
P(B)= Marginal probability of B.
If the probability of A is given and we need to find the probability of B, then it will be
given as:

It can be explained by using the below Venn diagram, where B is occurred event, so
sample space will be reduced to set B, and now we can only calculate event A when
event B is already occurred by dividing the probability of P(A⋀B) by P(B).

Probability Distributions
 One can express the probability of a proposition: –P(Weather=sunny) = 0.6 ;

P(Cavity=false) = P(¬cavity)=0.1
 Probability Distribution expresses all possible probabilities for some event – So for:

P(Weather=sunny) = 0.6; P(Weather=rain) = 0.1; P(Weather) = {0.72, 0.1, 0.29, 0.01}
for Weather={sun, rain, clouds, snow}

 Hence probability distribution can be seen as total function that returns probabilities
for all values of Weather. It is normalized, i.e., sum of all probabilities adds up to 1.

 Joint Probability Distribution: for a set of random variables, gives probability for every
combination of values of every variable. – Gives probability for every event within the
sample space – P(Weather, Cavity) = a 4x2 matrix of values:

 Full Joint Probability Distribution = joint distribution for all random variables in

domain. Every probability question about a domain can be answered by full joint
distribution, because every event is a sum of sample points (variable/value pairs). if
the variables are Cavity, Toothache, and Weather, then the full joint distribution is
given by P(Cavity, Toothache, Weather). This joint distribution can be represented as
a 2 × 2 × 4 table with 16 entries. Because every proposition’s probability is a sum over
possible worlds, a full joint distribution suffices, in principle, for calculating the

 DEPT. OF AIML PAGE 98

probability of any proposition.
 Some variables are continuous, e.g. P(Temp=82.3) = 0.23; P(Temp=82.5)= 0.24; etc.

• Also could assert ranges: P(Temp<85) or P(40 < Temp <67)
 We can express distributions as a parameterized function of value: • P (X = x) = U [18,

26](x) = uniform density between 18 and 26. It is known as a probability density
function (pdf). P is a really a density distribution; the whole range integrates to 1.
 The distribution pictorially looks like:

Kolomogorovs Axioms:

1. P(¬a) = 1- P(a)
Proof:
 P(¬a) = Pω∈¬a P(ω) (Definition of probability of any event)
 = Pω∈¬a P(ω) + Pω∈a P(ω) - Pω∈a P(ω)
 = Pω∈Ω P(ω) - Pω∈a P(ω) (grouping the first two terms)
 = 1 - P(a)

2. Probability distribution on a discrete random variable is 1
Proof:Let X be a discrete random variables of n events
Then, X={X1,X2,……..,Xn}
P(X)=P(X1,X2…,Xn)
 =P(X=X1)+P(X=X2)+….+P(X=Xn)
 =∑ 𝑃(𝑥)𝑛

𝑥=1
 = Pω∈Ω P(ω) (All sample spaces)
 =1

3. P(A|B)=1-P(A’|B)
Proof:
 P(B)=P((A∩B)∪(A′∩B))
 =P(A∩B)+P(A′∩B)
 P(A∩B)=P(B)−P(A′∩B)
Divide each term by P(B)
 P(A∩B)/P(B)=1- P(A′∩B)/P(B)
 P(A|B)=1-P(A’|B) (By definition of conditional probability)

 DEPT. OF AIML PAGE 99

4. Inclusion-Exclusion principle

𝑃(𝐴 ∧ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∨ 𝐵)

Proof:

P(AUB)=P(AU(B-A))
 =P(A)+P(B-A)
 =P(A)+P(B-A)+P(A∩B)- P(A∩B)
 =P(A)+P((B-A)U(A∩B))- P(A∩B)
 =P(A)+P(B)- P(A∩B)

Eg: Given that bus arriving late=0.3 and a student oversleeping
probability is 0.4., find the probability that student gets late

Let A=event that bus arrives late
 B=event that student oversleeps
 Given, P(A)=0.3 and P(B)=0.4
 As per inclusion-exclusion principle
 P(student gets late)=P(bus arrives late or student oversleeps)
 =P(AUB)
 = P(A)+P(B)- P(A∩B)
 =0.3+0.4-P(A).P(B) [as A and B can both occur
independently]
 =0.3+0.4-0.3*0.4=0.7-0.12=0.58

Expectations and probability
A gambling theory where a money is attached to the outcome of the probability is
called expectations. Think of it as a game between two agents: Agent 1 states, “my
degree of belief in event a is 0.4.” Agent 2 is then free to choose whether to wager for
or against a at stakes that are consistent with the stated degree of belief. That is, Agent
2 could choose to accept Agent 1’s bet that a will occur, offering $6 against Agent 1’s
$4. Or Agent 2 could accept Agent 1’s bet that ¬a will occur, offering $4 against Agent
1’s $6. Then we observe the outcome of a, and whoever is right collects the money. If
an agent’s degrees of belief do not accurately reflect the world, then you would expect
that it would tend to lose money over the long run to an opposing agent whose beliefs
more accurately reflect the state of the world

 DEPT. OF AIML PAGE 100

Thus in all cases agent1 loses money due to the belief values it has attached.

Inference using Full Joint Distributions
Logical Inference is asking whether something is true (entailed), given the KB.
However, Probabilistic Inference is about asking how likely something is, given the
KB . The process is to just compute the posterior probability for query proposition,
given KB!. We use the full joint probability distribution as the KB! Which contains the
probability of all possible worlds!. The mechanism of the inference is to look up the
probability of a query proposition. Further, extract and sum up the appropriate “slice”
of the joint distribution.
Example: Consider a world with just three boolean variables – Toothache (has one or
not) – Cavity (has or not) – Catch (dentists tool catches or not).
Start with the full joint distribution for this world:

Marginalization:

Sum up probabilities across values of other (non-specified) variables. In this case:
Cavity and Catch.
Generally: P(Y) = Σz∈Z P(Y,z) ,or also, by product rule: P(Y)=Σz∈Z P(Y|z) P(z)

 DEPT. OF AIML PAGE 101

Mutual Exclusion

P (cavity∨toothache) = 0.108+0.012+0.072+0.008+0.016+0.064 = 0.28
For any proposition φ, the P(φ) = sum the atomic events where it is true:
P (φ) = Σω:ω|=φP (ω)

Conditional probabilities

Normalization

Denominator can be viewed as a normalization constant α for the distribution
P(Cavity| toothache) ensures that the probability of the distribution adds up to 1.
P(Cavity|toothache) = α P(Cavity, toothache)
 = α [P(Cavity, toothache, catch) + P(Cavity, toothache, ¬catch)]
 = α [(0.108, 0.016) + (0.012, 0.064)]
 = α (0.12, 0.08) = (0.6, 0.4)

 DEPT. OF AIML PAGE 102

Note that proportions between (0.12, 0.08) and (0.6, 0.4) are same. The latter are just
normalized by application of α to add up to 1. So if α just normalizes, one could also
normalize “manually” à divide by sum of two.

Problems
1. In a shipment of 20 apples, 3 are rotten. 3 apples are randomly selected.
What is the probability that all three are rotten if the first and second are
not replaced?

Solution:
P(first apple is rotten)=3/20
P(second apple is rotten)=2/19 (as first apple is not replaced)
P(third apple is rotten)=1/18 (as second apple is also not replaced)
P(all three are rotten)=3/20 * 2/19 * 1/18=1/1140

2. A die is cast twice and a coin is tossed twice. What is the probability that
the die will turn a 6 each time and the coin will turn a tail every time?

Solution:
P(die turn up 6 first time)=1/6
P(die turn up 6 second time)=1/6
P(coin turn up tail first time)=1/2
P(coin turn up tail second time)=1/2
P(die turn up 6 and coin turn up tail each time)=1/6*1/6*1/2*1/2=1/144

3. An instructor has a question bank with 300 Easy T/F, 200 Difficult T/F,
500 Easy MCQ, and 400 Difficult MCQ. If a question is selected randomly
from the question bank, What is the probability that it is an easy question
given that it is an MCQ?
Solution
P(Easy)=800/1400
P(MCQ)=900/1400
P(Easy ∧ 𝑀𝐶𝑄)=500/1400
P(Easy | MCQ)=P(Easy ∧ 𝑀𝐶𝑄)/P(MCQ)=500/900=5/9

Independence of variables
The problem of full joint distribution get huge fast with the cross-product of all
variables, all values in their range. Different probability for every
variables...conditional on all values of all other variables is required. But are all of these
variables really related? Is every variable really related to all others?
Consider P(toothache, catch, cavity, cloudy) à 2 x 2 x 2 x 4 joint distr. = 32 entries –
By product rule:
P(toothache, catch, cavity, cloudy) = P(cloudy|toothache,catch,cavity)
P(touchache,catch,cavity).
But it the weather really conditional on toothaches, cavities and dentist’s tools? No! –
So realistically:
 P(cloudy|toothache,catch,cavity) = P(cloudy).
So then actually:
P(toothache, catch, cavity, cloudy) = P(cloudy) P(touchache,catch,cavity).

 DEPT. OF AIML PAGE 103

We say that cloudy and dental variables are independent (also absolute
independence). Effectively: the 32-element joint distribution table becomes one 8-
element table + 4-element table

Independence assertions based on judgment, specific knowledge of domain. It can
dramatically reduce information needed for full joint distribution

Bayes' theorem:
Bayes' theorem is also known as Bayes' rule, Bayes' law, or Bayesian reasoning, which
determines the probability of an event with uncertain knowledge. In probability
theory, it relates the conditional probability and marginal probabilities of two random
events. Bayes' theorem was named after the British mathematician Thomas Bayes.
The Bayesian inference is an application of Bayes' theorem, which is fundamental to
Bayesian statistics.

It is a way to calculate the value of P(B|A) with the knowledge of P(A|B).
Bayes' theorem can be derived using product rule and conditional probability of event
A with known event B:
As from product rule we can write:
P(A ⋀ B)= P(A|B) P(B) or
Similarly, the probability of event B with known event A:
P(A ⋀ B)= P(B|A) P(A)
Equating right hand side of both the equations, we will get:

The above equation (a) is called as Bayes' rule or Bayes' theorem. This equation is basic
of most modern AI systems for probabilistic inference.
It shows the simple relationship between joint and conditional probabilities. Here,
P(A|B) is known as posterior, which we need to calculate, and it will be read as
Probability of hypothesis A when we have occurred an evidence B.
P(B|A) is called the likelihood, in which we consider that hypothesis is true, then we
calculate the probability of evidence.
P(A) is called the prior probability, probability of hypothesis before considering the
evidence

 DEPT. OF AIML PAGE 104

P(B) is called marginal probability, pure probability of an evidence.
In the equation (a), in general, we can write P (B) = P(A)*P(B|Ai), hence the Bayes'
rule can be written as:

Where A1, A2, A3,........, An is a set of mutually exclusive and exhaustive events.
Applying Bayes' rule:
Bayes' rule allows us to compute the single term P(B|A) in terms of P(A|B), P(B), and
P(A). This is very useful in cases where we have a good probability of these three terms
and want to determine the fourth one. Suppose we want to perceive the effect of some
unknown cause, and want to compute that cause, then the Bayes' rule becomes:

Eg: a doctor knows that the disease meningitis causes the patient to have
a stiff neck,say, 70% of the time. probability that a patient has meningitis
is 1/50,000, and probability that any patient has a stiff neck is 1%. Find
probability of meningitis due to stiff neck

o The Known probability that a patient has meningitis disease is 1/50,000.
o The Known probability that a patient has a stiff neck is 1%.

Let s be the proposition that patient has stiff neck and m be the proposition that patient
has meningitis. , so we can calculate the following as:
P(m|s) = 0.7
P(m) = 1/50000
P(s)= .02

Problems on Bayes Theorem:
In a neighbourhood, 90% children were falling sick due flu and 10% due to
measles and no other disease. The probability of observing rashes for
measles is 0.95 and for flu is 0.08. If a child develops rashes, find the
child’s probability of having flu.
Solution:
Let,
F: children with flu
M: children with measles
R: children showing the symptom of rash
P(F) = 90% = 0.9
P(M) = 10% = 0.1
P(R|F) = 0.08

 DEPT. OF AIML PAGE 105

P(R|M) = 0.95

Bayes Theorem with combined evidence

Naive Bayes classifiers are a collection of classification algorithms based on Bayes’
Theorem. It is not a single algorithm but a family of algorithms where all of them
share a common principle, i.e. every pair of features being classified is independent
of each other. To start with, let us consider a dataset.One of the most simple and
effective classification algorithms, the Naïve Bayes classifier aids in the rapid
development of machine learning models with rapid prediction capabilities. Naïve
Bayes algorithm is used for classification problems. It is highly used in text
classification. In text classification tasks, data contains high dimension (as each word
represent one feature in the data). It is used in spam filtering, sentiment detection,
rating classification etc. The advantage of using naïve Bayes is its speed. It is fast and
making prediction is easy with high dimension of data.

The “Naive” part of the name indicates the simplifying assumption made by
the Naïve Bayes classifier. The classifier assumes that the features used to describe
an observation are conditionally independent, given the class label. The “Bayes” part
of the name refers to Reverend Thomas Bayes, an 18th-century statistician and
theologian who formulated Bayes’ theorem.

Probability and Wumpus world
Uncertainty arises in the wumpus world because the agent’s sensors give only partial
information about the world. For example, Figure below shows a situation in which
each of the three reachable squares—[1,3], [2,2], and [3,1]—might contain a pit. Pure
logical inference can conclude nothing about which square is most likely to be safe, so
a logical agent might have to choose randomly. Probabilistic agent performs better
than logic agent.

 DEPT. OF AIML PAGE 106

The aim is to calculate the probability that each of the three squares contains a pit. The
relevant properties of the wumpus world are that (1) a pit causes breezes in all
neighboring squares, and (2) each square other than [1,1] contains a pit with
probability 0.2. Wumpus world is divided into three regions: Query node whose
probability is seeked. Known nodes whose probability is known. Frontier nodes are
nodes adjacent to known nodes except query node. Remaining nodes in the Wumpus
world form other nodes.

Different probability calculations are shown.
Case-1: [1,3] as a pit and various combinations of frontiers are computed.

Case-2: [1,3] do not have put and various combinations of frontiers are computed.

